6,019 research outputs found
Microcracking in piezoelectric materials by the Boundary Element Method
A 3D boundary element model for piezoelectric polycrystalline micro-cracking is discussed in this contribution. The model is based on the boundary integral representation of the electro-mechanical behavior of individual grains and on the use of a generalized cohesive formulation for inter-granular micro-cracking. The boundary integral formulation allows to address the electro-mechanical boundary value problem in terms of generalized grain boundary and inter-granular displacements and tractions only, which implies the natural inclusion of the cohesive laws in the formulation, the simplification of the analysis pre-processing stage, and the reduction of the number of degrees of freedom of the overall analysis with respect to other popular numerical methods
Towards an expanded model of litigation
Introduction: The call for contributions for this workshop describes the important new challenges for the legal search
community this domain brings. Rather than just understanding the challenges this domain poses in terms of
their technical properties, we would like to suggest that understanding these challenges as socio-technical
challenges will be important. That is, as well as calling for research on a technical level to address these
challenges we are also calling for work to understand the social practices of those involved in e-discovery
(ED) and related legal work. A particularly interesting feature of this field is that it is likely that search
technologies will (at least semi-)automate responsiveness review in the relatively near term and this will
change the way that the work is organised and done in many ways – offering new possibilities for new
ways of organising the work. As well as designing those technologies for automating responsiveness
review we need to be envisioning how the work will be done in the future, how these technologies will
impact the organisation of the case and so on. In this position paper we therefore outline the importance of
understanding the wider social context of ED when designing tools and technologies to support and change
the work. We would like to reinforce and expand on Conrad’s call for IR researchers to understand just
what ED entails [2], include the stages that come both before and after core retrieval activities.
The importance of considering the social aspects of work in the design of the technology has been
established for some time. Ushering in this ‘turn to the social,’ and focusing on interface design, Gentner
and Grudin [4] described how the GUI has already changed from an interface for engineers, representing
the engineering model of the machine to one that supported single ‘everyman’ users (based on ideas from
psychology). From then onwards the interface has evolved to support groups of users, taking into account
the social and organisational contexts of use. This has particular resonance for the design of ED
technologies: during ED in particular and the wider legal process there are often many lawyers involved –
reviewing documents, determining issues, etc. Even if the way that their work is organised currently is not
seen as collaborative in the traditional sense – with individual lawyers working on individual document sets
to review them - their work needs to be coordinated and it seems likely that their work could be enhanced
by, for example, knowledge of what their colleagues had found, how the case was shaping up, new key
terms and facts turned up and so on. Work is often modelled for the purposes of design using process
models, but this misses out on the richness and variety actually found when one examines how the work is
carried out [3]. Technologies which strictly enforce the process models can often hinder the work, or end
up being worked around as was the case with workflow systems since people interpret processes very
flexibly to get the work done ([1], [3]). Other studies in other fields have found similar problems when
systems are designed on for example cognitive models of how the work is done; they often do not take into
account the situated nature of the work and thus they can be very difficult to use [5]. We believe, like [2],
that a clear understanding of the social practices of ED is vital for the creation of high-quality, meaningful
tools and technologies. We furthermore propose that work practice studies, to be used in combination with
other methods, are a central part of getting the detailed understanding of the work practices central to
designing useful and intelligent tools. Work practice studies would involve ethnographies, consisting
primarily of observation, undertaken of practitioners engaging in the work of ED
Photoacoustic detection of circular dichroism in a square array of nano-helices
A novel nano-structured material has been assembled by means of a focused ion beam technique. This artificial material is composed of a square array of nano-helices built upon a multilayered substrate. Optical measurements of circular dichroism of a sample are confirmed by photo-acoustic investigations, which allow to directly study the helix-field interaction apart from the dielectric substrate. The study is consistent with 3D numerical simulations, and demonstrates to be an efficient tool of investigation for the entire class of these novel structured materials
Inspiration from Intersecting D-branes: General Supersymmetry Breaking Soft Terms in No-Scale -
Motivated by D-brane model building, we evaluate the - model
with additional vector-like particle multiplets, referred to as flippons,
within the framework of No-Scale Supergravity with non-vanishing general
supersymmetry breaking soft terms at the string scale. The viable phenomenology
is uncovered by applying all current experimental constraints, including but
not limited to the correct light Higgs boson mass, WMAP and Planck relic
density measurements, and several LHC constraints on supersymmetric particle
spectra. Four interesting regions of the parameter space arise, as well as
mixed scenarios, given by: (i) light stop coannihilation; (ii) pure Higgsino
dark matter; (iii) Higgs funnel; and (iv) light stau coannihilation. All
regions can generate the observed value of the relic density commensurate with
a 125 GeV light Higgs boson mass, with the exception of the relatively small
relic density value for the pure Higgsino lightest supersymmetric particle
(LSP). This work is concluded by gauging the model against present LHC search
constraints and derivation of the final states observable at the LHC for each
of these scenarios.Comment: 13 pages, 4 Figures, 4 Table
On the kinetic treatment of pair productionin strong electric fields
We investigate the behavior of the electron-positron plasma created by a strong electric field using a kinetic approach. Assuming a uniform and unbound field, the system under consideration is uniform and homogeneous in the physical
space and axially symmetric in the momentum space with the axis of symmetry given by the direction of the initial field. The relativistic Boltzmann-Vlasov equation for pairs is solved numerically for different starting values of the field with particular attention to the momentum distribution of pairs produced from the field. Then we solve the system of coupled Vlasov-Boltzmann equation for pairs and Boltzmann
equation for photons including collision terms for all the two-particle interactions between pairs and photons: electron-positron annihilation into two photons and its
inverse process, Compton and Coulomb scatterings. We compare the two cases and discuss the role of the interactions
Alexander quandle lower bounds for link genera
We denote by Q_F the family of the Alexander quandle structures supported by
finite fields. For every k-component oriented link L, every partition P of L
into h:=|P| sublinks, and every labelling z of such a partition by the natural
numbers z_1,...,z_n, the number of X-colorings of any diagram of (L,z) is a
well-defined invariant of (L,P), of the form q^(a_X(L,P,z)+1) for some natural
number a_X(L,P,z). Letting X and z vary in Q_F and among the labellings of P,
we define a derived invariant A_Q(L,P)=sup a_X(L,P,z).
If P_M is such that |P_M|=k, we show that A_Q(L,P_M) is a lower bound for
t(L), where t(L) is the tunnel number of L. If P is a "boundary partition" of L
and g(L,P) denotes the infimum among the sums of the genera of a system of
disjoint Seifert surfaces for the L_j's, then we show that A_Q(L,P) is at most
2g(L,P)+2k-|P|-1. We set A_Q(L):=A_Q(L,P_m), where |P_m|=1. By elaborating on a
suitable version of a result by Inoue, we show that when L=K is a knot then
A_Q(K) is bounded above by A(K), where A(K) is the breadth of the Alexander
polynomial of K. However, for every g we exhibit examples of genus-g knots
having the same Alexander polynomial but different quandle invariants A_Q.
Moreover, in such examples A_Q provides sharp lower bounds for the genera of
the knots. On the other hand, A_Q(L) can give better lower bounds on the genus
than A(L), when L has at least two components.
We show that in order to compute A_Q(L) it is enough to consider only
colorings with respect to the constant labelling z=1. In the case when L=K is a
knot, if either A_Q(K)=A(K) or A_Q(K) provides a sharp lower bound for the knot
genus, or if A_Q(K)=1, then A_Q(K) can be realized by means of the proper
subfamily of quandles X=(F_p,*), where p varies among the odd prime numbers.Comment: 36 pages; 16 figure
A necessary flexibility condition of a nondegenerate suspension in Lobachevsky 3-space
We show that some combination of the lengths of all edges of the equator of a
flexible suspension in Lobachevsky 3-space is equal to zero (each length is
taken either positive or negative in this combination).Comment: 20 pages, 13 figure
On modelling damage in composite laminates using the Ritz method and continuum damage mechanics
In this work, a Ritz formulation for the analysis of damage initiation and evolution in
composite plates under progressive loading is presented. The proposed model assumes a first order
shear deformation theory and considers geometric non-linearities through the von Karman
assumptions. The damage is modelled through Continuum Damage Mechanics. A set of results is
presented to show the potential of the method and highlight some issues to be addressed by suitable
developments of the method
- …