1,979 research outputs found
Electron-phonon interaction in the solid form of the smallest fullerene C
The electron-phonon coupling of a theoretically devised carbon phase made by
assembling the smallest fullerenes C is calculated from first
principles. The structure consists of C cages in an {\it fcc} lattice
interlinked by two bridging carbon atoms in the interstitial tetrahedral sites
({\it fcc}-C). The crystal is insulating but can be made metallic by
doping with interstitial alkali atoms. In the compound NaC the
calculated coupling constant is 0.28 eV, a value much larger
than in C, as expected from the larger curvature of C. On the
basis of the McMillan's formula, the calculated =1.12 and a
assumed in the range 0.3-0.1 a superconducting T in the range 15-55 K is
predicted.Comment: 7 page
New insight into cataract formation -- enhanced stability through mutual attraction
Small-angle neutron scattering experiments and molecular dynamics simulations
combined with an application of concepts from soft matter physics to complex
protein mixtures provide new insight into the stability of eye lens protein
mixtures. Exploring this colloid-protein analogy we demonstrate that weak
attractions between unlike proteins help to maintain lens transparency in an
extremely sensitive and non-monotonic manner. These results not only represent
an important step towards a better understanding of protein condensation
diseases such as cataract formation, but provide general guidelines for tuning
the stability of colloid mixtures, a topic relevant for soft matter physics and
industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let
Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics
International audienceIn this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: (1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low level change information between the time layers and object level building description to recognize and separate changed and unaltered buildings. (2) To answering the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. (3) To simultaneously ensure the convergence, optimality and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel non-uniform stochastic object birth process, which generates relevant objects with higher probability based on low-level image features
The electron-phonon coupling strength at metal surfaces directly determined from the Helium atom scattering Debye-Waller factor
A new quantum-theoretical derivation of the elastic and inelastic scattering
probability of He atoms from a metal surface, where the energy and momentum
exchange with the phonon gas can only occur through the mediation of the
surface free-electron density, shows that the Debye-Waller exponent is directly
proportional to the electron-phonon mass coupling constant . The
comparison between the values of extracted from existing data on the
Debye-Waller factor for various metal surfaces and the values known
from literature indicates a substantial agreement, which opens the possibility
of directly extracting the electron-phonon coupling strength in quasi-2D
conducting systems from the temperature or incident energy dependence of the
elastic Helium atom scattering intensities.Comment: 14 pages, 2 figures, 1 tabl
The Electron-Phonon Coupling Constant for Single-Layer Graphene on Metal Substrates Determined from He Atom Scattering
Recent theory has demonstrated that the value of the electron-phonon coupling
strength can be extracted directly from the thermal attenuation
(Debye-Waller factor) of Helium atom scattering reflectivity. This theory is
here extended to multivalley semimetal systems and applied to the case of
graphene on different metal substrates and graphite. It is shown that
rapidly increases for decreasing graphene-substrate binding strength. Two
different calculational models are considered which produce qualitatively
similar results for the dependence of on binding strength. These
models predict, respectively, values of and 0.32 for a
hypothetical flat free-standing single-layer graphene with cyclic boundary
conditions. The method is suitable for analysis and characterization of not
only the graphene overlayers considered here, but also other layered systems
such as twisted graphene bilayers.Comment: 25 pages, 3 figures, 1 tabl
Spectrum and polarization of laser light scattered by solids
Laser light scattering from yttrium-iron garne
- …