12 research outputs found
Electron-phonon interaction in C70
The matrix elements of the deformation potential of C are calculated
by means of a simple, yet accurate solution of the electron-phonon coupling
problem in fullerenes, based on a parametrization of the ground state
electronic density of the system in terms of hybridized orbitals.
The value of the calculated dimensionless total electron-phonon coupling
constant is , an order of magnitude smaller than in
C, consistent with the lack of a superconducting phase transition in
CA fullerite, and in overall agreement with measurements of the
broadening of Raman peaks in CK. We also calculate the photoemission
cross section of C, which is found to display less structure than that
associated with C, in overall agreement with the experimental
findings.Comment: To be published in Phys. Rev.
Two C28 Clathrates
Although carbon fullerenic clathrates, characterized by eclipsed bonds,
have not been synthesized yet, their structure may be reflected in the assembly of tetrahedral diamondoid clusters (hollow diamonds) due to their assembling into the eclipsed configuration. The detection by El Goresy et al. (Lunar Planetary Sci 34:art. No. 1016, 2003a; C R Geosci 335:889\u2013898, 2003b; Meteorit Planet Sci 39:A36, 2004) in highly shocked meteoritic rocks of a cubic diamond-like polymorph with almost 400 atoms per unit cell stimulated the present investigation on hypothetical
small carbon clathrates with 4-membered rings on which hollow diamonds can be
constructed via a cluster assembly. Two polytypes of a novel C28 clathrate, one
body-centered orthorhombic (bco) and the other simple cubic (sc), are proposed, with a detailed ab initio characterization of the electronic and zero-wave-vector vibrational structures of the bco phase. The assembly of C14 diamondoid clusters into the sc-C28 array is briefly discussed in comparison with the above polymorph in order to illustrate a viable method of topological analysis of complex crystalline structures