53 research outputs found

    Germinal centers in human lymph nodes contain reactivated memory B cells

    Get PDF
    To reveal migration trails of antigen-responsive B cells in lymphoid tissue, we analyzed immunoglobulin (Ig)M-VH and IgG-VH transcripts of germinal center (GC) samples microdissected from three reactive human lymph nodes. Single B cell clones were found in multiple GCs, one clone even in as many as 19 GCs. In several GCs, IgM and IgG variants of the same clonal origin were identified. The offspring of individual hypermutated IgG memory clones were traced in multiple GCs, indicating repeated engagement of memory B cells in GC reactions. These findings imply that recurring somatic hypermutation progressively drives the Ig repertoire of memory B cells to higher affinities and infer that transforming genetic hits in non-Ig genes during lymphomagenesis do not have to arise during a single GC passage, but can be collected during successive recall responses

    Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity

    Get PDF
    We analyzed the structure of antigen receptors of a comprehensive panel of mature B non-Hodgkin's lymphomas (B-NHLs) by comparing, at the amino acid level, their immunoglobulin (Ig)VH-CDR3s with CDR3 sequences present in GenBank. Follicular lymphomas, diffuse large B cell lymphomas, Burkitt's lymphomas, and myelomas expressed a CDR3 repertoire comparable to that of normal B cells. Mantle cell lymphomas and B cell chronic lymphocytic leukemias (B-CLLs) expressed clearly restricted albeit different CDR3 repertoires. Lymphomas of mucosa-associated lymphoid tissues (MALTs) were unique as 8 out of 45 (18%) of gastric- and 13 out of 32 (41%) of salivary gland-MALT lymphomas expressed B cell antigen receptors with strong CDR3 homology to rheumatoid factors (RFs). Of note, the RF-CDR3 homology without exception included N-region–encoded residues in the hypermutated IgVH genes, indicating that they were stringently selected for reactivity with auto-IgG. By in vitro binding studies with 10 MALT lymphoma–derived antibodies, we showed that seven of these cases, of which four with RF-CDR3 homology, indeed possessed strong RF reactivity. Of one MALT lymphoma, functional proof for selection of subclones with high RF affinity was obtained. Interestingly, RF-CDR3 homology and t(11;18) appeared to be mutually exclusive features and RF-CDR3 homology was not encountered in any of the 19 pulmonary MALT lymphomas studied

    Repertoire Analysis of B-Cells Located in Striated Ducts of Salivary Glands of Patients With Sjogren's Syndrome

    Get PDF
    A major complication of primary Sjögren's syndrome (pSS) is development of mucosa associated lymphoid tissue (MALT) B-cell lymphoma, particularly in salivary glands. These lymphomas express FcRL4 and are characteristically associated with lymphoepithelial lesions. Neoplastic B-cells may be derived from non-neoplastic glandular intraductal B-cells, also virtually all expressing FcRL4. A characteristic feature of MALT lymphomas is the production of rheumatoid factors (RFs), which are largely encoded by stereotypic immunoglobulin variable heavy chain (IGHV) sequences. The aim of this study was to examine whether there is a relationship between the intraductal and periductal B-cells and whether the intraductal B-cells are selected for RF. RNA was extracted from laser-microdissected infiltrated ductal areas and periductal infiltrates from frozen parotid gland tissue sections of 5 pSS patients. PCR amplified IGHV transcripts were cloned into pCR™4-TOPO vector and subsequently sequenced. Microdissected ducts yielded 96 unique IGHV sequences derived from intraductal B-cells, while 119 unique IGHV sequences were obtained from periductal infiltrates. No major difference in VH-gene usage was observed between intraductal and periductal B-cells. Nearly all (>90%) IGHV sequences derived from both intraductal and periductal B-cells were mutated. Clonal expansions as defined by shared VDJ rearrangements were also present among both intraductal and periductal B-cells: in total 32 clones were found, from which 12 were located within ducts, 15 in periductal areas, and five clones shared members in both areas. We observed 12 IGHV rearrangements encoding for RF sequences from which two were derived from intraductal B-cells and 10 from periductal B-cells. Nine RF sequences were part of a clone. Together these findings indicate that intraductal and periductal B-cells are closely related to each other. Intraductal B-cells are most likely derived from periductal B-cells. We did not obtain evidence that RF-specific B-cells are enriched within the striated ducts. We speculate that in principle any activated B-cell can enter the striated ducts from the periductal infiltrate, irrespective of its antigenic specificity. Within the ducts, these B-cells may receive additional activation and proliferation signals, to further expand at these sites and by acquisition of driver-mutations develop toward lymphoma

    Salivary Gland Mucosa-Associated Lymphoid Tissue-Type Lymphoma From Sjogren's Syndrome Patients in the Majority Express Rheumatoid Factors Affinity-Selected for IgG

    Get PDF
    Objective: Patients with Sjӧgren's syndrome (SS) have an increased risk of developing malignant B cell lymphomas, particularly mucosa-associated lymphoid tissue (MALT)–type lymphomas. We have previously shown that a predominant proportion of patients with SS-associated salivary gland MALT lymphoma express somatically hypermutated IgM with strong amino acid sequence homology with stereotypic rheumatoid factors (RFs). The present study was undertaken in a larger cohort of patients with SS-associated MALT lymphoma to more firmly assess the frequency of RF reactivity and the significance of somatic IGV-region mutations for RF reactivity. Methods: B cell antigen receptors (BCRs) of 16 patients with SS-associated salivary gland MALT lymphoma were analyzed. Soluble recombinant IgM was produced of 12 MALT lymphoma samples, including 1 MALT lymphoma sample that expressed an IgM antibody fitting in a novel IGHV3-30–encoded stereotypic IGHV subset. For 4 of the 12 IgM antibodies from MALT lymphoma samples, the somatically mutated IGHV and IGKV gene sequences were reverted to germline configurations. Their RF activity and binding affinity were determined by enzyme-linked immunosorbent assay and surface plasmon resonance, respectively. Results: Nine (75%) of the 12 IgM antibodies identified in patients with SS-associated salivary gland MALT lymphoma displayed strong monoreactive RF activity. Reversion of the IGHV and IGKV mutations to germline configuration resulted in RF affinities for IgG that were significantly lower for 3 of the 4 somatically mutated IgM antibodies. In stereotypic IGHV3-7/IGKV3-15–encoded RFs, a recurrent replacement mutation in the IGKV3-15–third complementarity-determining region was found to play a pivotal role in the affinity for IgG-Fc. Conclusion: A majority of patients with SS-associated salivary gland MALT lymphoma express somatically mutated BCRs that are selected for monoreactive, high-affinity binding of IgG-Fc. These data underscore the notion that soluble IgG, most likely in immune complexes in inflamed tissues, is the principal autoantigen in the pathogenesis of a variety of B cell lymphomas, particularly SS-associated MALT lymphomas

    Acquisition of N-Glycosylation Sites in Immunoglobulin Heavy Chain Genes During Local Expansion in Parotid Salivary Glands of Primary Sjogren Patients

    Get PDF
    Previous studies revealed high incidence of acquired N-glycosylation sites acquired N-glycosylation sites in RNA transcripts encoding immunoglobulin heavy variable region (IGHV) 3 genes from parotid glands of primary Sjogren's syndrome (pSS) patients. In this study, next generation sequencing was used to study the extent of ac-Nglycs among clonally expanded cells from all IGVH families in the salivary glands of pSS patients. RNA was isolated from parotid gland biopsies of five pSS patients and five non-pSS sicca controls. IGHV sequences covering all functional IGHV genes were amplified, sequenced, and analyzed. Each biopsy recovered 1,800-4,000 unique IGHV sequences. No difference in IGHV gene usage was observed between pSS and non-pSS sequences. Clonally related sequences with more than 0.3% of the total number of sequences per patient were referred to as dominant clone. Overall, 70 dominant clones were found in pSS biopsies, compared to 15 in non-pSS. No difference in percentage mutation in dominant clone-derived IGHV sequences was seen between pSS and non-pSS. In pSS, no evidence for antigen-driven selection in dominant clones was found. We observed a significantly higher amount of ac-Nglycs among pSS dominant clone-derived sequences compared to non-pSS. Ac-Nglycs were, however, not restricted to dominant clones or IGHV gene. Most ac-Nglycs were detected in the framework 3 region. No stereotypic rheumatoid factor rearrangements were found in dominant clones. Lineage tree analysis showed in four pSS patients, but not in non-pSS, the presence of the germline sequence from a dominant clone. Presence of germline sequence and mutated IGHV sequences in the same dominant clone provide evidence that this clone originated from a naive B-cell recruited into the parotid gland to expand and differentiate locally into plasma cells. The increased presence of ac-Nglycs in IGHV sequences, due to somatic hypermutation, might provide B-cells an escape mechanism to survive during immune response. We speculate that glycosylation of the B-cell receptor makes the cell sensitive to environmental lectin signals to contribute to aberrant B-cell selection in pSS parotid glands

    Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome

    Get PDF
    We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis.</p

    Single-Molecule Analysis Reveals the Kinetics and Physiological Relevance of MutL-ssDNA Binding

    Get PDF
    DNA binding by MutL homologs (MLH/PMS) during mismatch repair (MMR) has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA) binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET) and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (KD = 29 nM) while it dramatically decreases above 100 mM (KD>2 µM). Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR
    corecore