6 research outputs found

    Antimicrobial and genotoxic activity of novel ruthenium(III) complex with n-phenyl-5-nitrosalicylideneimine

    Get PDF
    In this study, novel hexa coordinated ruthenium(III) complex of the type Na[RuCl2L2)] (where L = monobasic bidentate Schiff base derived from the condensation of 5-nitrosalicyladehyde with aniline) has been synthesized and characterized by electrospray ionization time-of-flight mass spectrometry, infrared spectroscopy and ultraviolet/visible spectrophotometry. Schiff base N-phenyl-5-nitrosalicylideneimine is coordinated to the ruthenium via imine nitrogen and phenolic oxygen. Mass spectra showed molecular ion (M-) at m/z 653.9641 which corresponds to [C26H18Cl2N4O6Ru]-. The in vitro antimicrobial properties of the Schiff base and the complex were tested by micro-dilution technique and agar plate assay for determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The compounds showed a higher antibacterial activity against tested Gram-positive bacteria (Staphylococcus aureus ATCC 33591 and ATCC 29213), whereas against the Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603) were ineffective. The genotoxic effects of Ru(III) complex were investigated using the Cytokinesis Block Micronucleus (CBMN) assay in human lymphocytes cultures. The cell culture treated with the complex at a concentration of 3.7 µg/mL exhibit the most prominent effect of decreasing the frequency of micronucleus for 44%, while at the concentrations of 1.5 and 7.4 µg/mL effect is slightly lower (40%), compared to the control cell culture

    Fracture Load of CAD/CAM Feldspathic Crowns Influenced by Abutment Material

    Get PDF
    In vitro studies investigating the mechanical properties of dental reconstructions use various materials to replicate prepared teeth. However, no uniform recommendation exists as to which material is most suitable for standardized testing. The purpose of this study was to identify a material that resembles human dentin in fracture load tests. Sixteen human teeth were scanned with an intraoral scanner to obtain copies of the original crown morphology and were then prepared for crowns. Replica dies of the prepared teeth including the root morphology were fabricated with a Computer-aided design and computer-aided manufacturing (CAD/CAM) system and divided into four groups: (A) reinforced composite (RC); (B) human dentin (HD); (C) polymethyl methacrylate (PM); and (D) hybrid ceramic (HC). Sixty-four feldspar ceramic crowns were designed with the biocopy mode, fabricated with a CAD/CAM system, luted on the dies, and then with the roots embedded in polymethyl methacrylate. Care was taken to position all specimens of the same morphology identically. Thermo-mechanical load cycling was performed in a chewing simulator followed by fractural loading of the crowns. A mixed effect linear model was fitted to the data, and pairwise contrasts were estimated on the marginal means and corrected for multiple testing according to Tukey (α = 0.05). The means for fracture load (N) were 2435 N (95% CI (2162, 2709)) for hybrid ceramic, 1838 N (95% CI (1565, 2112)) for reinforced composite, 1670 N (95% CI (1396, 1943)) for human tooth and 1142 N (95% CI (868, 1415)) for polymethyl methacrylate abutment materials. Post-hoc pairwise contrasts revealed a statistically significant (p < 0.05) difference among all groups except for reinforced composite and human dentin (p = 0.76). The results indicate that the mechanical properties of abutment dies play a significant role for a possible substitution of natural teeth in in vitro studies

    Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development

    No full text

    Small Molecule Inhibitors Targeting Chikungunya Virus

    No full text
    corecore