353 research outputs found

    Fatigue After CriTical illness (FACT): Co-production of a self-management intervention to support people with fatigue after critical illness

    Get PDF
    Purpose: Fatigue is a common and debilitating problem in patients recovering from critical illness. To address a lack of evidence-based interventions for people with fatigue after critical illness, we co-produced a self-management intervention based on self-regulation theory. This article reports the development and initial user testing of the co-produced intervention. Methods: We conducted three workshops with people experiencing fatigue after critical illness, family members, and healthcare professionals to develop a first draft of the FACT intervention, designed in web and electronic document formats. User testing and interviews were conducted with four people with fatigue after critical illness. Modifications were made based on the findings. Results: Participants found FACT acceptable and easy to use, and the content provided useful strategies to manage fatigue. The final draft intervention includes four key topics: (1) about fatigue which discusses the common characteristics of fatigue after critical illness; (2) managing your energy with the 5 Ps (priorities, pacing, planning, permission, position); (3) strategies for everyday life (covering physical activity; home life; leisure and relationships; work, study, and finances; thoughts and feelings; sleep and eating); and (4) goal setting and making plans. All material is presented as written text, videos, and supplementary infographics. FACT includes calls with a facilitator but can also be used independently. Conclusions: FACT is a theory driven intervention co-produced by patient, carer and clinical stakeholders and is based on contemporary available evidence. Its development illustrates the benefits of stakeholder involvement to ensure interventions are informed by user needs. Further testing is needed to establish the feasibility and acceptability of FACT. Implications for clinical practice: The FACT intervention shows promise as a self-management tool for people with fatigue after critical illness. It has the potential to provide education and strategies to patients at the point of discharge and follow-up

    The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation

    Full text link
    We study the computational complexity of problems that arise in abstract argumentation in the context of dynamic argumentation, minimal change, and aggregation. In particular, we consider the following problems where always an argumentation framework F and a small positive integer k are given. - The Repair problem asks whether a given set of arguments can be modified into an extension by at most k elementary changes (i.e., the extension is of distance k from the given set). - The Adjust problem asks whether a given extension can be modified by at most k elementary changes into an extension that contains a specified argument. - The Center problem asks whether, given two extensions of distance k, whether there is a "center" extension that is a distance at most (k-1) from both given extensions. We study these problems in the framework of parameterized complexity, and take the distance k as the parameter. Our results covers several different semantics, including admissible, complete, preferred, semi-stable and stable semantics

    Prevalence and experience of fatigue in survivors of critical illness: a mixed-methods systematic review

    Get PDF
    We conducted a mixed methods systematic review to investigate the prevalence, experience and management of fatigue in survivors of critical illness. We identified 76 studies investigating fatigue or vitality in adults discharged from an intensive care unit and split the data we extracted into three datasets: vitality scores from the Short Form Health Survey-36 (n = 54); other quantitative data (n = 19); and qualitative data (n = 9). We assessed methodological quality using critical appraisal skills programme tools. We adopted a segregated approach to mixed-methods synthesis. In a final step, we attributed combined results to one of four qualitative themes: prevalence and severity; contributing factors; impacts on quality of life; and assessment and management. Prevalence of fatigue ranged from 13.8 to 80.9%. Short Form Health Survey-36 vitality scores were commonly used as a marker of fatigue. Vitality scores reached a nadir approximately 1 month following ICU discharge (mean (SD) 56.44 (32.30); 95%CI 52.92–59.97). They improved over time, but seldom reached reference population scores. Associated biological, disease-related and psychological factors included age, poor pre-morbid status, sleep and psychological disturbance. Qualitative data highlight the profound negative impact of fatigue on survivors’ quality of life. Survivors seldom had any information provided on the potential impact of fatigue. No fatigue assessment tools specific to critical illness or evidence-based interventions were reported. Fatigue is highly prevalent in survivors of critical illness, and negatively impacts recovery. Further research on developing fatigue assessment tools specifically for critically ill patients and evaluating the impact of pharmacological and non-pharmacology interventions is needed

    Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Get PDF
    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site

    A Comparative Study of Defeasible Argumentation and Non-monotonic Fuzzy Reasoning for Elderly Survival Prediction Using Biomarkers

    Get PDF
    Computational argumentation has been gaining momentum as a solid theoretical research discipline for inference under uncertainty with incomplete and contradicting knowledge. However, its practical counterpart is underdeveloped, with a lack of studies focused on the investigation of its impact in real-world settings and with real knowledge. In this study, computational argumentation is compared against non-monotonic fuzzy reasoning and evaluated in the domain of biological markers for the prediction of mortality in an elderly population. Different non-monotonic argument-based models and fuzzy reasoning models have been designed using an extensive knowledge base gathered from an expert in the field. An analysis of the true positive and false positive rate of the inferences of such models has been performed. Findings indicate a superior inferential capacity of the designed argument-based models

    Damage buildup in GaN under ion bombardment

    Get PDF
    The damage buildup until amorphization in wurtzite GaN films under keV Light(C-12) and heavy (Au-197) ion bombardment at room and liquid nitrogen (LN2) temperatures is studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). The effect of beam flux on implantation damage in GaN is reported. A marked similarity between damage buildup for Light and heavy ion bombardment regimes is observed. The results point to substantial dynamic annealing of irradiation defects even during heavy ion bombardment at LN2 temperature. Amorphization starts from the GaN surface with increasing ion dose for both LN2 and room-temperature bombardment with light or heavy ions. A strong surface defect peak, seen by RBS/C, arises from an amorphous layer at the GaN surface, as indicated by TEM. The origin of such an amorphous layer is attributed to the trapping of mobile point defects by the GaN surface, as suggested by the flux behavior. However, in the samples implanted with light ions to low doses (1 X 10(15) cm(-2)), no amorphous layer on the GaN surface is revealed by TEM. Damage buildup is highly sig-modal for LN: temperature irradiation with light or heavy ions. Formation of planar defects in the crystal bulk is assumed to provide a "nucleation site" for amorphization with increasing ion dose during irradiation at LN2 temperature. For room-temperature bombardment with heavy ions. the damage in the GaN bulk region saturates at a level lower than that of the amorphous phase, as measured by RBS/C, and amorphization proceeds From the GaN surface with increasing ion dose. For such a saturation regime at room temperature, implantation damage in the bulk consists of point-defect clusters and planar defects which are parallel to the basal plane of the GaN film. Various defect interaction processes in GaN during ion bombardment are proposed to explain the observed somewhat unexpected behavior of disorder buildup

    Recent advances in the bcr-abl negative chronic myeloproliferative diseases

    Get PDF
    The chronic myeloproliferative disorders are clonal hematopoietic stem cell disorders of unknown etiology. In one of these (chronic myeloid leukemia), there is an associated pathognomonic chromosomal abnormality known as the Philadelphia chromosome. This leads to constitutive tyrosine kinase activity which is responsible for the disease and is used as a target for effective therapy. This review concentrates on the search in the other conditions (polycythemia vera, essential thrombocythemia and idiopathic mylofibrosis) for a similar biological marker with therapeutic potential. There is no obvious chromosomal marker in these conditions and yet evidence of clonality can be obtained in females by the use of X-inactivation patterns. PRV-1mRNA over expression, raised vitamin B(12 )levels and raised neutrophil alkaline phosphatase scores are evidence that cells in these conditions have received excessive signals for proliferation, maturation and reduced apoptosis. The ability of erythroid colonies to grow spontaneously without added external erythropoietin in some cases, provided a useful marker and a clue to this abnormal signaling. In the past year several important discoveries have been made which go a long way in elucidating the involved pathways. The recently discovered JAK2 V617F mutation which occurs in the majority of cases of polycythemia vera and in about half of the cases with the two other conditions, enables constitutive tyrosine kinase activity without the need for ligand binding to hematopoietic receptors. This mutation has become the biological marker for these conditions and has spurred the development of a specific therapy to neutralize its effects. The realization that inherited mutations in the thrombopoietin receptor (c-Mpl) can cause a phenotype of thrombocytosis such as in Mpl Baltimore (K39N) and in a Japanese family with S505A, has prompted the search for acquired mutations in this receptor in chronic myeloproliferative disease. Recently, two mutations have been found; W515L and W515K. These mutations have been evident in patients with essential thrombocythemia and idiopathic myelofibrosis but not in polycythemia vera. They presumably act by causing constitutional, activating conformational changes in the receptor. The discovery of JAK2 and Mpl mutations is leading to rapid advancements in understanding the pathophysiology and in the treatment of these diseases
    corecore