2,350 research outputs found
Non-linear observability of activated sludge process models
The main contribution of this paper is to present a non-linear observability analysis method of Activated Sludge Models (ASM), which are used in many control applications. The objective is to reduce the unobservable ASM1 model to an observable one that can be used to implement advanced estimation algorithms. Local observability is achieved under certain operating conditions but failed at some points in the whole domain of definition. Furthermore, piece-wise observability rank test is also performed with three measurements and compared with non-linear observability. Simulation results are presented to demonstrate the proposed method. Copyright © 2005 IFA
On an application of extended kalman filtering to activated sludge processes: a benchmark study
The growing demand for performance improvements of urban wastewater system operation coupled with the lack of instrumentation in most wastewater treatment plants motivates the need for non-linear observers to be used as virtual sensors for estimation and control of effluent quality. This paper is focused on the development of a general procedure for on-line monitoring of activated sludge processes, using an extended Kalman filter (EKF) approach. The Activated Sludge Model no.1 (ASM1) is selected to describe the biological processes in the reactor. On-line measurements are corrupted by additive white noise and unknown inputs are modelled using fast Fourier transform (FFT) and spectrum analyses. The given procedure aims at reducing the original ASM1 model to an observable and identifiable model, which can be used for joint non-linear state and parameter estimations. Simulation results are presented to demonstrate the effectiveness of the proposed methods and show that on-line monitoring of SND and XND concentrations is achieved when dynamic input data are used tocharacterize the influent wastewater for the model
Micropollutants affect the ability of phytoplankton communities to track environmental changes
Human activities strongly influence environmental processes, and while human domination increases, biodiversity progressively declines in ecosystems worldwide. High genetic and phenotypic variability ensures functionality and stability of ecosystem processes through time and increases the resilience and the adaptive capacity of populations and communities, while a reduction in functional diversity leads to a decrease in the ability to respond in a changing environment. Pollution is becoming one of the major threats in aquatic ecosystem, and pharmaceutical and personal care products (PPCPs) in particular are a relatively new group of environmental contaminants suspected to have adverse effects on aquatic organisms. There is still a lake of knowledge on the responses of communities to complex chemical mixtures in the environment. We used an individual-trait-based approach to assess the response of a phytoplankton community in a scenario of combined pollution and environmental change (steady increasing in temperature). We manipulated individual-level trait diversity directly (by filtering out size classes) and indirectly (through exposure to PPCPs mixture), and studied how reduction in trait-diversity affected community structure, production of biomass and the ability of the community to track a changing environment. We found that exposure to PPCPs slows down the ability of the community to respond to an increasing temperature. Our study also highlights how physiological responses (induced by PPCPs exposure) are important for ecosystem processes: although from an ecological point of view experimental communities converged to a similar structure, they were functionally different
Unravelling the functional biomechanics of dental features and tooth wear
Most of the morphological features recognized in hominin teeth, particularly the topography of the occlusal surface, are generally interpreted as an evolutionary functional adaptation for mechanical food processing. In this respect, we can also expect that the general architecture of a tooth reflects a response to withstand the high stresses produced during masticatory loadings. Here we use an engineering approach, finite element analysis (FEA), with an advanced loading concept derived from individual occlusal wear information to evaluate whether some dental traits usually found in hominin and extant great ape molars, such as the trigonid crest, the entoconid-hypoconulid crest and the protostylid have important biomechanical implications. For this purpose, FEA was applied to 3D digital models of three Gorilla gorilla lower second molars (M2) differing in wear stages. Our results show that in unworn and slightly worn M2s tensile stresses concentrate in the grooves of the occlusal surface. In such condition, the trigonid and the entoconid-hypoconulid crests act to reinforce the crown locally against stresses produced along the mesiodistal groove. Similarly, the protostylid is shaped like a buttress to suffer the high tensile stresses concentrated in the deep buccal groove. These dental traits are less functional in the worn M2, because tensile stresses decrease physiologically in the crown with progressing wear due to the enlargement of antagonistic contact areas and changes in loading direction from oblique to nearly parallel direction to the dental axis. This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite stresses and reduce tooth failure throughout the lifetime of an individual
Molar macrowear reveals Neanderthal eco-geographic dietary variation
Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources
Internal Audit: What Definition In The Moroccan Public Context?
This study explores the role and objectives of internal audit in the Moroccan public sector through a qualitative approach, based on interviews with fifteen experienced internal auditors. The results reveal a profession in full evolution, characterized by increased professionalization and continuous adaptation to international standards, while taking into account local specificities. The study highlights the importance of internal audit's advisory role in terms of compliance and oversight, and as a key strategic partner for governance and improving the performance of public entities
L'entrepreneuriat féminin au Maroc: Réalité, freins et perspéctives de réussite
Au cours des dernières années on assiste à une croissance du nombre des entreprises créées par les femmes dans le monde. À ce niveau on trouve que la promotion de l’entrepreneuriat féminin constitue l’un des aspects de la maitrise de la femme des axes liés à l’économie que sont la création des unités génératrices de valeurs ajoutées et son intégration aux sphères politiques et autres. Donc l’objet de cet article est de bien comprendre et analyser l’apport de l’entrepreneuriat féminin dans le développement socio-économique au Maroc, aussi de reconnaitre les difficultés auxquelles font face les femmes entrepreneures marocaines.
Genetic divergence in Northamerican freshwater planarians of the Dugesia dorotocephala group (Turbellaria, Tricladida, Paludicola)
The genetic differentiation between the members of the Dugesia (Girardia) dorotocephala group was analyzed by means of multilocus electrophoresis, and comared to that of another planarian secies, D. tahitiensis, also belonging to the subgenus Girardia. The species examined were: D. dorotocephala s.s (2n = 16), D. arizonensis (2n = 8), D. jenkinsae (2n = 8), and the above mentioned D. tahitiensis (2n = 16). The former three species inhabit North America, and show different proportion of fissiparous and sexual individuals; the latter species inhabits Polynesia and is fully asexual. A total of 11 enzyme loci were genetically analyzed: Mdh-1, Mdh-2, Zdh-1, Idh-2, G3pdh, Got-1, Ck, Pgm-2, Ada, Mpi, and Gpi. Low values of observed mean heterozygosity per locus (Ho) were found in the populations studied, ranging from 0 to 0.18 (average 0.08. In asexual populations (except that of D. tahitiensis) fixed heterozygosity was observered in all the individuals for 1 or 2 loci. The genetic divergence between the species examined is very high, with many loci showing discriminating alleles in different taxa (Nei's genetic distance varies from 0.871 to 1.759). The populations of D. dorotocehala s.s., on the contrary, appear to be genetically quite homogenous average D= 0.019), and the genetic distance values are apparently unrelated to their geographic location and to their way of reproduction. The genetic distance between D. tahitiensis, a species not included in the D. dorotocephala group and D. dorotocephala s.s. is 1.314 and hence similar to the D value between two members of;he dorotocephala group: D. dorotocephala and D. jenkinsae (D = 1.303). The genetic relationships among the populations studied were established by UPGMA cluster analysis and multidimensional scaling. The descendence of the North American species with 2n = 8 from a dorotocephala-like ancestor with 2n = 16 is considered. It is suggested that the latter, as well as a tahitiensis-like line, also having 2n = 16, have originated from a common ancestor by geographic isolation
Reconstructing the childhood diet of the individuals from the Middle Late Bronze Age Bezdanjača Cave, Croatia (ca. 1430 1290 BCE) using stable C and N isotope analysis of dentin collagen
This paper investigates the childhood diet of 16 individuals from the Middle Late Bronze Age (1430 1290 BCE) Bezdanjača Cave (Lika region, Croatia) using stable isotope analysis of dentin collagen from permanent first molars. Results from the analysis reveal that the individuals from Bezdanjača consumed notable quantities of C4 plants during their childhood. The most common C4 plant is millet, whose spread throughout Southern Europe was recently dated to the second half of the 2nd millennium BCE, which agrees with the results obtained in this research. Comparisons between the data collected for the individuals from Bezdanjača and other Middle and Late Bronze Age sites in Croatia suggest that only the individuals from the site of Veliki Vital (Middle Bronze Age, inland Croatia) exhibit similar isotopic values to those from Bezdanjača. Human isotopic values from coastal sites, however, reveal that during the Middle and Late Bronze Age people from the coast had diet that still predominantly contained C3 plant-based foods, which appears to suggest that the dispersion of this crop in Croatia during the Bronze Age followed an east-west trajectory, appearing earlier (Middle and Late Bronze Age) in inland settlements such as Veliki Vital and Bezdanjača and only later (Late Bronze Age and mostly Iron Age) in coastal sites
- …