1,521 research outputs found

    Relating correlation measures: the importance of the energy gap

    Full text link
    The concept of correlation is central to all approaches that attempt the description of many-body effects in electronic systems. Multipartite correlation is a quantum information theoretical property that is attributed to quantum states independent of the underlying physics. In quantum chemistry, however, the correlation energy (the energy not seized by the Hartree-Fock ansatz) plays a more prominent role. We show that these two different viewpoints on electron correlation are closely related. The key ingredient turns out to be the energy gap within the symmetry-adapted subspace. We then use a few-site Hubbard model and the stretched H2_2 to illustrate this connection and to show how the corresponding measures of correlation compare.Comment: 6 pages, 3 figure

    Physical Wigner functions

    Get PDF
    In spite of their potential usefulness, the characterizations of Wigner functions for Bose and Fermi statistics given by O'Connell and Wigner himself almost thirty years ago has drawn little attention. With an eye towards applications in quantum chemistry, we revisit and reformulate them in a more convenient way.Comment: Latex, 10 page
    • …
    corecore