3 research outputs found
Moisture sorption isotherms and heat of sorption of Algerian bay leaves (Laurus nobilis)
ABSTRACT: The moisture sorption isotherms of Algerian bay leaves (Laurus nobilis) were determined experimentally in this work. The equilibrium moisture contents of the leaves were measured at 40, 50, and 60 °C using static gravimetric method. Six mathematical models were tested to fit the experimental data of sorption isotherms and predict the hygroscopic behavior during storage or drying. Peleg model was found to be the best fitting model for describing the sorption curves. The net isosteric heat of sorption was computed from the equilibrium data at different temperatures by applying the integrated form of the Clausius-Clapeyron equation. The net isosteric heat of sorption is inversely proportional to the equilibrium moisture content and is found to be an exponential function of moisture content
Moisture sorption isotherms and heat of sorption of Algerian bay leaves (Laurus nobilis)
The moisture sorption isotherms of Algerian bay leaves (Laurus nobilis) were determined experimentally in this work. The equilibrium moisture contents of the leaves were measured at 40, 50, and 60 °C using static gravimetric method. Six mathematical models were tested to fit the experimental data of sorption isotherms and predict the hygroscopic behavior during storage or drying. Peleg model was found to be the best fitting model for describing the sorption curves. The net isosteric heat of sorption was computed from the equilibrium data at different temperatures by applying the integrated form of the Clausius-Clapeyron equation. The net isosteric heat of sorption is inversely proportional to the equilibrium moisture content and is found to be an exponential function of moisture content
Moisture sorption isotherms and heat of sorption of algerian bay leaves (Laurus nobilis)
The moisture sorption isotherms of Algerian bay leaves (Laurus nobilis) were determined experimentally in this work. The equilibrium moisture contents of the leaves were measured at 40, 50, and 60 °C using static gravimetric method. Six mathematical models were tested to fit the experimental data of sorption isotherms and predict the hygroscopic behavior during storage or drying. Peleg model was found to be the best fitting model for describing the sorption curves. The net isosteric heat of sorption was computed fromthe equilibrium data at different temperatures by applying the integrated form of the Clausius-Clapeyron equation. The net isosteric heat of sorption is inversely proportional to the equilibrium moisture content and isfound to be an exponential function of moisture content