29 research outputs found

    Reporting Intellectual Capital to Augment Research, Development and Innovation in SME's

    No full text
    In December of 2004 the Directorate General for Research and Technological Development (DG RTD) of the European Commission (EC) set up a High-Level Expert Group to propose a series of measures to stimulate the reporting of Intellectual Capital in research intensive Small and Medium-Sized Enterprises (SMEs). The Expert Group has focused on enterprises that either perform Research and Development (R&D), or use the results of R&D to innovate and has also considered the implications for the specialist R&D units of larger enterprises, dedicated Research & Technology Organizations and Universities. In this report the Expert Group presents its findings, leading to six recommendations to stimulate the reporting of Intellectual Capital in SMEs by raising awareness, improving reporting competencies, promoting the use of IC Reporting and facilitating standardization

    Thermoregulatory responses of patients with extensive healed burns

    No full text

    Thermoregulation in Burn Patients During Exercise

    No full text

    New Analytical Approach to Quinolizidine Alkaloids and Their Assumed Biosynthesis Pathways in Lupin Seeds

    No full text
    Alkaloids play an essential role in protecting plants against herbivores. Humans can also benefit from the pharmacological effects of these compounds. Plants produce an immense variety of structurally different alkaloids, including quinolizidine alkaloids, a group of bi-, tri-, and tetracyclic compounds produced by Lupinus species. Various lupin species produce different alkaloid profiles. To study the composition of quinolizidine alkaloids in lupin seeds, we collected 31 populations of two wild species native to Israel, L. pilosus and L. palaestinus, and analyzed their quinolizidine alkaloid contents. Our goal was to study the alkaloid profiles of these two wild species to better understand the challenges and prospective uses of wild lupins. We compared their profiles with those of other commercial and wild lupin species. To this end, a straightforward method for extracting alkaloids from seeds and determining the quinolizidine alkaloid profile by LC–MS/MS was developed and validated in-house. For the quantification of quinolizidine alkaloids, 15 analytical reference standards were used. We used GC–MS to verify and cross-reference the identity of certain alkaloids for which no analytical standards were available. The results enabled further exploration of quinolizidine alkaloid biosynthesis. We reviewed and re-analyzed the suggested quinolizidine alkaloid biosynthesis pathway, including the relationship between the amino acid precursor l-lysine and the different quinolizidine alkaloids occurring in seeds of lupin species. Revealing alkaloid compositions and highlighting some aspects of their formation pathway are important steps in evaluating the use of wild lupins as a novel legume crop

    Self-association of the SET domains of human ALL-1 and of Drosophila TRITHORAX and ASH1 proteins

    No full text
    The human ALL-1 gene is involved in acute leukemia through gene fusions, partial tandem duplications or a specific deletion. Several sequence motifs within the ALL-1 protein, such as the SET domain, PHD fingers and the region with homology to DNA methyl transferase are shared with other proteins involved in transcription regulation through chromatin alterations. However, the function of these motifs is still not clear. Studying ALL-1 presents an additional challenge because the gene is the human homologue of Drosophila trithorax. The latter is a member of the trithorax-Polycornb gene family which acts to determine the body pattern of Drosophila by maintaining expression or repression of the Antennapedia-bithorax homeotic gene complex. Here we apply yeast two hybrid methodology, in vivo immunoprecipitation and in vitro 'pull down' techniques to show self association of the SET motifs of ALL-1, TRITHORAX and ASH1 proteins (Drosophila ASH1 is encoded by a trithorax-group gene). Point mutations in evolutionary conserved residues of TRITHORAX SET, abolish the interaction. SET-SET interactions might act in integrating the activity of ALL-1 (TRX and ASH1) protein molecules, simultaneously positioned at different maintenance elements and directing expression of the same or different target genes

    Trithorax and ASH1 interact directly and associate with the trithorax group-responsive bxd region of the Ultrabithorax promoter

    No full text
    Trithorax (TRX) and ASH1 belong to the trithorax group (trxG) of transcriptional activator proteins, which maintains homeotic gene expression during Drosophila development. TRX and ASH1 are localized on chromosomes and share several homologous domains with other chromatin-associated proteins, including a highly conserved SET domain and PHD fingers. Based on genetic interactions between trx and ash1 and our previous observation that association of the TRX protein with polytene chromosomes is ash1 dependent, we investigated the possibility of a physical linkage between the two proteins. We found that the endogenous TRX and ASH1 proteins coimmunoprecipitate from embryonic extracts and colocalize on salivary gland polytene chromosomes. Furthermore, we demonstrated that TRX and ASH1 bind in vivo to a relatively small (4 kb) bxd subregion of the homeotic gene Ultrabithorax (Ubx), which contains several trx response elements. Analysis of the effects of ash1 mutations on the activity of this regulatory region indicates that it also contains ash1 response element(s). This suggests that ASH1 and TRX act on Ubx in relatively close proximity to each other. Finally, TRX and ASH1 appear to interact directly through their conserved SET domains, based on binding assays in vitro and in yeast and on coimmunoprecipitation assays with embryo extracts. Collectively, these results suggest that TRX and ASH1 are components that interact either within trxG protein complexes or between complexes that act in close proximity on regulatory DNA to maintain Ubx transcription
    corecore