117 research outputs found

    Interleukin-6 and interleukin-6 receptor secretion by chronic lymphatic leukaemia and normal B lymphocytes: effect of PMA and PWM

    Get PDF
    Interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) were detected in supernatants of cultures of B chronic lymphatic leukaemia (CLL) lymphocytes. Phorbol-12-myristate 13 acetate (PMA) caused a decrease in the levels of IL-6 in 14 out of 16 cultures and an increase in levels of sIL6R in all 15 cases. The effect of pokeweed mitogen (PWM) was variable and not significant. The levels of IL-6 were below the detection limit (60 pg/ml) in sera of 13 CLL patients whereas sIL-6R was detected (13 ng/ml to 97 ng/ml) in the 13 sera. IL6 was not detected in cultures of unstimulated or stimulated with PMA or PWM normal human B cells. Levels of sIL-6R were minimal in cultures of normal B lymphocytes and were increased in PMA stimulated cultures. The results are consistent with the view that B-CLL cells produce spontaneously IL-6 which could act in an autocrine fashion to cause shedding of surface IL-6R and account for the correlation found between serum levels of sIL-6R and B-CLL lymphocyte numbers. The fall in levels of IL-6 in PMA stimulated CLL cultures might express masking or degradation of IL-6 after combination with the receptor

    Induction of tumor-specific acquired immunity against already established tumors by selective stimulation of innate DEC-205+ dendritic cells

    Get PDF
    Two major distinct subsets of dendritic cells (DCs) are arranged to regulate our immune responses in vivo; 33D1+ and DEC-205+ DCs. Using anti-33D1-specific monoclonal antibody, 33D1+ DCs were successfully depleted from C57BL/6 mice. When 33D1+ DC-depleted mice were stimulated with LPS, serum IL-12, but not IL-10 secretion that may be mediated by the remaining DEC-205+ DCs was markedly enhanced, which may induce Th1 dominancy upon TLR signaling. The 33D1+ DC-depleted mice, implanted with syngeneic Hepa1-6 hepatoma or B16-F10 melanoma cells into the dermis, showed apparent inhibition of already established tumor growth in vivo when they were subcutaneously (sc) injected once or twice with LPS after tumor implantation. Moreover, the development of lung metastasis of B16-F10 melanoma cells injected intravenously was also suppressed when 33D1+ DC-deleted mice were stimulated twice with LPS in a similar manner, in which the actual cell number of NK1.1+CD3βˆ’ NK cells in lung tissues was markedly increased. Furthermore, intraperitoneal (ip) administration of a very small amount of melphalan (l-phenylalanine mustard; l-PAM) (0.25Β mg/kg) in LPS-stimulated 33D1+ DC-deleted mice helped to induce H-2Kb-restricted epitope-specific CD8+ cytotoxic T lymphocytes (CTLs) among tumor-infiltrating lymphocytes against already established syngeneic E.G7-OVA lymphoma. These findings indicate the importance and effectiveness of selective targeting of a specific subset of DCs, such as DEC-205+ DCs alone or with a very small amount of anticancer drugs to activate both CD8+ CTLs and NK effectors without externally added tumor antigen stimulation in vivo and provide a new direction for tumor immunotherapy

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Secure Computation with Preprocessing via Function Secret Sharing

    Get PDF
    We propose a simple and powerful new approach for secure computation with input-independent preprocessing, building on the general tool of function secret sharing (FSS) and its efficient instantiations. Using this approach, we can make efficient use of correlated randomness to compute any type of gate, as long as a function class naturally corresponding to this gate admits an efficient FSS scheme. Our approach can be viewed as a generalization of the TinyTable protocol of Damgard et al. (Crypto 2017), where our generalized variant uses FSS to achieve exponential efficiency improvement for useful types of gates. By instantiating this general approach with efficient PRG-based FSS schemes of Boyle et al. (Eurocrypt 2015, CCS 2016), we can implement useful nonlinear gates for equality tests, integer comparison, bit-decomposition and more with optimal online communication and with a relatively small amount of correlated randomness. We also provide a unified and simplified view of several existing protocols in the preprocessing model via the FSS framework. Our positive results provide a useful tool for secure computation tasks that involve secure integer comparisons or conversions between arithmetic and binary representations. These arise in the contexts of approximating real-valued functions, machine-learning classification, and more. Finally, we study the necessity of the FSS machinery that we employ, in the simple context of secure string equality testing. First, we show that any online-optimal secure equality protocol implies an FSS scheme for point functions, which in turn implies one-way functions. Then, we show that information-theoretic secure equality protocols with relaxed optimality requirements would follow from the existence of big families of matching vectors. This suggests that proving strong lower bounds on the efficiency of such protocols would be difficult

    MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security

    Get PDF
    Most modern actively-secure multiparty computation (MPC) protocols involve generating random data that is secret-shared and authenticated, and using it to evaluate arithmetic or Boolean circuits in different ways. In this work we present a generic method for converting authenticated secret-shared data between different fields, and show how to use it to evaluate so-called ``mixed\u27\u27 circuits with active security and in the full-threshold setting. A mixed circuit is one in which parties switch between different subprotocols dynamically as computation proceeds, the idea being that some protocols are more efficient for evaluating arithmetic circuits, and others for Boolean circuits. One use case of our switching mechanism is for converting between secret-sharing-based MPC and garbled circuits (GCs). The former is more suited to the evaluation of arithmetic circuits and can easily be used to emulate arithmetic over the integers, whereas the latter is better for Boolean circuits and has constant round complexity. Much work already exists in the two-party semi-honest setting, but the nn-party dishonest majority case was hitherto neglected. We call the actively-secure mixed arithmetic/Boolean circuit a marbled circuit. Our implementation showed that mixing protocols in this way allows us to evaluate a linear Support Vector Machine with 400400 times fewer AND gates than a solution using GC alone albeit with twice the preprocessing required using only SPDZ (DamgΓ₯rd et al., CRYPTO \u2712), and thus our solution offers a tradeoff between online and preprocessing complexity. When evaluating over a WAN network, our online phase is 1010 times faster than the plain SPDZ protocol

    Turbospeedz: Double Your Online SPDZ! Improving SPDZ using Function Dependent Preprocessing

    Get PDF
    Secure multiparty computation allows a set of mutually distrusting parties to securely compute a function of their private inputs, revealing only the output, even if some of the parties are corrupt. Recent years have seen an enormous amount of work that drastically improved the concrete efficiency of secure multiparty computation protocols. Many secure multiparty protocols work in an ``offline-online model. In this model, the computation is split into two main phases: a relatively slow ``offline phase , which the parties execute before they know their input, and a fast ``online phase , which the parties execute after receiving their input. One of the most popular and efficient protocols for secure multiparty computation working in this model is the SPDZ protocol (Damgaard et al., CRYPTO 2012). The SPDZ offline phase is function independent, i.e., does not requires knowledge of the computed function at the offline phase. Thus, a natural question is: can the efficiency of the SPDZ protocol be improved if the function is known at the offline phase? In this work, we answer the above question affirmatively. We show that by using a function dependent preprocessing protocol, the online communication of the SPDZ protocol can be brought down significantly, almost by a factor of 2, and the online computation is often also significantly reduced. In scenarios where communication is the bottleneck, such as strong computers on low bandwidth networks, this could potentially almost double the online throughput of the SPDZ protocol, when securely computing the same circuit many times in parallel (on different inputs). We present two versions of our protocol: Our first version uses the SPDZ offline phase protocol as a black-box, which achieves the improved online communication at the cost of slightly increasing the offline communication. Our second version works by modifying the state-of-the-art SPDZ preprocessing protocol, Overdrive (Keller et al., Eurocrypt 2018). This version improves the overall communication over the state-of-the-art SPDZ when the function is known at the offline phase

    Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-Ξ± (TNF-Ξ±) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-Ξ± & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p

    Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells

    Get PDF
    Background: Tpr is a large coiled-coil protein located in the nuclear basket of the nuclear pore complex for which many different functions were proposed from yeast to human. Methodology/Principal Findings: Here we show that depletion of Tpr by RNA interference triggers G0–G1 arrest and ultimately induces a senescent-like phenotype dependent on the presence of p53. We also found that Tpr depletion impairs the NES [nuclear export sequence]-dependent nuclear export of proteins and causes partial co-depletion of Nup153. In addition Tpr depletion impacts on level and function of the SUMO-protease SENP2 thus affecting SUMOylation regulation at the nuclear pore and overall SUMOylation in the cell. Conclusions: Our data for the first time provide evidence that a nuclear pore component plays a role in controlling cellular senescence. Our findings also point to new roles for Tpr in the regulation of SUMO-1 conjugation at the nuclear pore and directly confirm Tpr involvement in the nuclear export of NES-proteins

    Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry

    Get PDF
    Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family

    Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model

    Get PDF
    INTRODUCTION: The purpose of the present study was to determine whether cytotoxic chemotherapeutic agents administered prior to immunotherapy with gene vaccines could augment the efficacy of the vaccines. METHODS: Mice were injected in the mammary fat pad with an aggressive breast tumor cell line that expresses HER2/neu. The mice were treated 3 days later with a noncurative dose of either doxorubicin or paclitaxel, and the following day with a gene vaccine to HER2/neu. Two more doses of vaccine were given 14 days apart. Two types of gene vaccines were tested: a plasmid vaccine encoding a self-replicating RNA (replicon) of Sindbis virus (SINCP), in which the viral structural proteins were replaced by the gene for neu; and a viral replicon particle derived from an attenuated strain of Venezuelan equine encephalitis virus, containing a replicon RNA in which the Venezuelan equine encephalitis virus structural proteins were replaced by the gene for neu. RESULTS: Neither vaccination alone nor chemotherapy alone significantly reduced the growth of the mammary carcinoma. In contrast, chemotherapy followed by vaccination reduced tumor growth by a small, but significant amount. Antigen-specific CD8(+ )T lymphocytes were induced by the combined treatment, indicating that the control of tumor growth was most probably due to an immunological mechanism. The results demonstrated that doxorubicin and paclitaxel, commonly used chemotherapeutic agents for the treatment of breast cancer, when used at immunomodulating doses augmented the antitumor efficacy of gene vaccines directed against HER2/neu. CONCLUSIONS: The combination of chemotherapeutic agents plus vaccine immunotherapy may induce a tumor-specific immune response that could be beneficial for the adjuvant treatment of patients with minimal residual disease. The regimen warrants further evaluation in a clinical setting
    • …
    corecore