2,074 research outputs found

    Multigrid for propagators of staggered fermions in four-dimensional SU(2)SU(2) gauge fields

    Full text link
    Multigrid (MG) methods for the computation of propagators of staggered fermions in non-Abelian gauge fields are discussed. MG could work in principle in arbitrarily disordered systems. The practical variational MG methods tested so far with a ``Laplacian choice'' for the restriction operator are not competitive with the conjugate gradient algorithm on lattices up to 18418^4. Numerical results are presented for propagators in SU(2)SU(2) gauge fields.Comment: 4 pages, 3 figures (one LaTeX-figure, two figures appended as encapsulated ps files); Contribution to LATTICE '92, requires espcrc2.st

    Optimized Multi-Party Quantum Clock Synchronization

    Full text link
    A multi-party protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz. that accuracy monotonically decreases with the number n of party members. But, this is only true for synchronization when one limits oneself to W-states. This work shows that usage of Zen-states, a generalization of W-states, results in improved accuracy, having a maximum when \lfloor n/2 \rfloor of its members have their qubits with a |1> value

    Evolutionarily Stable Sets in Quantum Penny Flip Games

    Full text link
    In game theory, an Evolutionarily Stable Set (ES set) is a set of Nash Equilibrium (NE) strategies that give the same payoffs. Similar to an Evolutionarily Stable Strategy (ES strategy), an ES set is also a strict NE. This work investigates the evolutionary stability of classical and quantum strategies in the quantum penny flip games. In particular, we developed an evolutionary game theory model to conduct a series of simulations where a population of mixed classical strategies from the ES set of the game were invaded by quantum strategies. We found that when only one of the two players' mixed classical strategies were invaded, the results were different. In one case, due to the interference phenomenon of superposition, quantum strategies provided more payoff, hence successfully replaced the mixed classical strategies in the ES set. In the other case, the mixed classical strategies were able to sustain the invasion of quantum strategies and remained in the ES set. Moreover, when both players' mixed classical strategies were invaded by quantum strategies, a new quantum ES set emerged. The strategies in the quantum ES set give both players payoff 0, which is the same as the payoff of the strategies in the mixed classical ES set of this game.Comment: 25 pages, Quantum Information Processing Journa

    Idealized Multigrid Algorithm for Staggered Fermions

    Full text link
    An idealized multigrid algorithm for the computation of propagators of staggered fermions is investigated. Exemplified in four-dimensional SU(2)SU(2) gauge fields, it is shown that the idealized algorithm preserves criticality under coarsening. The same is not true when the coarse grid operator is defined by the Galerkin prescription. Relaxation times in computations of propagators are small, and critical slowing is strongly reduced (or eliminated) in the idealized algorithm. Unfortunately, this algorithm is not practical for production runs, but the investigations presented here answer important questions of principle.Comment: 11 pages, no figures, DESY 93-046; can be formatted with plain LaTeX article styl

    Some Comments on Multigrid Methods for Computing Propagators

    Full text link
    I make three conceptual points regarding multigrid methods for computing propagators in lattice gauge theory: 1) The class of operators handled by the algorithm must be stable under coarsening. 2) Problems related by symmetry should have solution methods related by symmetry. 3) It is crucial to distinguish the vector space VV from its dual space VV^*. All the existing algorithms violate one or more of these principles.Comment: 16 pages, LaTeX plus subeqnarray.sty (included at end), NYU-TH-93/07/0

    A Cluster Algorithm for the Z2Z_2 Kalb-Ramond Model

    Get PDF
    A cluster algorithm is presented for the Z2Z_2 Kalb-Ramond plaquette model in four dimensions which dramatically reduces critical slowing. The critical exponent zz is reduced from z>2 z>2 (standard Metropolis algorithm) to z=0.32±0.06z= 0.32\pm0.06. The Cluster algorithm updates the monopole configuration known to be responsible for the second order phase transition.Comment: 9 pages, LaTeX + 7 figures in self-extracting shell archiv
    corecore