17 research outputs found
RK1, the first very short peptide from Buthus occitanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis.
International audienceScorpion toxins have been the subject of many studies which explore their pharmacological potential toward diverse molecular targets, known to monitor key mechanisms in cancer such as proliferation, migration and angiogenesis. The few peptides from scorpion venom that have an anti-tumor effect are generally cytotoxic. Herein, we present the first description of a short 14 amino acid peptide (called RK1), purified from the venom of Buthus occitanus tunetanus, with the particular capabilities, among different other scorpion peptides, to inhibit cell proliferation, migration and angiogenesis of U87 (Glioblastoma) and IGR39 (Melanoma). Moreover, RK1 is a first peptide derived from scorpion venom exhibiting a potential anti-tumoral activity with no manifest toxicity. Our results suggest that, in terms of its primary structure, RK1 is unique compared to a variety of known peptides purified from scorpion venoms. In addition, RK1 is the first natural peptide able to abolish completely the proliferation of cancer cells. The Chicken chorioallantoic membrane model revealed that RK1 strongly inhibits ex-vivo vascular growth. RK1 could open new perspective for the pharmaceutical application of short scorpion venom peptides in anticancer activity and may represent the first member of a new group of scorpion peptides
The First Snake Venom KTS/Disintegrins-Integrin Interactions Using Bioinformatics Approaches
Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1β1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1β1 receptors, which could improve the selection process of the best active molecules for antitumor therapies
Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach
International audienceAmong various chronic disorders, cancer and diabetes mellitus are the most common disorders. This study was designed to evaluate the effectiveness of hydroalcoholic extract of Phoenix dactylifera L. leaves (HEPdL) in animal models of type II diabetes in vitro/in vivo and in a human melanoma-derived cell line (IGR-39). A liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis was also performed to determine the amount of phenolic and flavonoid compounds in this plant. The physicochemical results by LC–MS/MS analysis of HEPdL showed the presence of 10 phenolic compounds. The in vitro study showed that the extract exhibited a more specific and potent inhibitor of α-glucosidase than α-amylase with an IC50 value of 20 ± 1 μg/mL and 30 ± 0.8 μg/mL, respectively. More importantly, the in vivo study of the postprandial hyperglycemia activity with (20 mg/kg) of HEPdL showed a decrease in plasma glucose levels after 60 min in resemblance to the glucor (acarbose) (50 mg/kg) effect. The oral administration of HEPdL (20 mg/kg) in alloxan-induced diabetic mices for 28 days showed a more significant anti-diabetic activity than that of the drug (50 mg/kg). Moreover, cytotoxicity effects of HEPdL in IGR-39 cancer cell lines were tested by MTT assay. This extract was effective in inhibiting cancer cells growth (IGR-39) at dose 35 and 75 μg/mL. These results confirm ethnopharmacological significance of the plant and could be taken further for the development of an effective pharmaceutical drug against diabetes and cance
Expression, purification and functionality of bioactive recombinant human vascular endothelial growth factor VEGF(165) in E-coli
International audienceVascular endothelial growth factor (VEGF) is associated with tumour growth and metastasis. Because VEGF is the major player in both angiogenesis and vascular permeability and the most explored factor in angio-inhibitory therapies, many expression procedures have been developed to produce functional VEGF(165) in convenient yield. In this study, recombinant human VEGF(165) was cloned and expressed in Escherichia coli (BL21)-DE3 cells and large scale production was performed by fermentation. A high yield of active soluble protein was obtained after protein extraction employing both lysozyme and sonication treatment. Inclusion bodies were also isolated from the cell lysate and subjected to a simple protocol of solubilisation and refolding. Single-step purification was performed using nickel affinity chromatography and the purified proteins were able to recognize monoclonal Anti-poly-His antibody. The biological activity of the VEGF(165) was successfully tested using the Chicken chorioallantoic membrane assay, wound-healing migration and proliferation assay on human umbilical vein endothelial cells (HUVEC)
Hyalomma dromedarii (Acari: Ixodidae) Salivary Gland Extract Inhibits Angiogenesis and Exhibits In Vitro Antitumor Effects.
International audienceHard ticks (Acari: Ixodidae) are blood-sucking ectoparasites characterized by the extended period of their attachment to their host. To access their bloodmeal, ticks secrete saliva containing a range of molecules that target the host's inflammation, immune system, and hemostatic components. Some of these molecules reportedly possess antiangiogenic and antitumor properties. The present study describes our investigation, the first of its kind, of the antiangiogenic and antitumoral effects of the Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae), salivary gland extract (SGE), which inhibited the adhesion and migration of Human Umbilical Vein Endothelial Cells (HUVECs) in a dose-dependent manner, as well as angiogenesis in the Chick Chorioallantoic Membrane model. Interestingly, H. dromedarii SGE exerted an antiproliferative effect on U87 glioblastoma cells and inhibited their adhesion and migration to fibrinogen. These results open up new possibilities for characterizing and developing new molecules involved in the key steps of tumor progression
RK, the first scorpion peptide with dual disintegrin activity on α1β1 and αvβ3 integrins
International audiencethe first scorpion peptide with dual disintegrin activity on α1β1 and αvβ3 integrins. Abstract: Scorpion peptides are well known for their pharmaceutical potential on different targets. These include mainly the ion channels which were found to be highly expressed in many diseases, including cancer, auto-immune pathologies and Alzheimer. So far, however, the disintegrin activity had only been characterized for snake venom molecules. Herein, we present the first short peptide, purified from the venom of Buthus occitanus tunetanus, (termed RK) able to inhibit the cell adhesion of Glioblastoma, Melanoma and Rat pheochromocytoma to different extracellular matrix (ECM) receptors. Anti-integrin antibody assay suggests that RK interacts with both α1β1 and αvβ3 with a more pronounced effect for the former. The examination of the primary structure of RK suggests the involvement of two motifs: KSS, analogue to KTS which was characterized for α1β1 Snake venom disintegrins, and ECD, analogue to RGD which was found to be active on αvβ3. To assess their roles in the disintegrin activity of RK, we conducted a computational analysis. The molecular docking study shows that RK involves mainly two segments to interact with the α1β1 integrin, but the peptide does not implicate the KSS motif in the interaction. The molecular modeling study, suggests the key contribution of the ECD segment in the interaction with αvβ3 integrin
Helix aspersa maxima mucus exhibits antimelanogenic and antitumoral effects against melanoma cells
International audienceSnail secretion is currently revolutionizing the world of cosmetics and human skin care. The efficacy of snail secretion in wounds healing has been proven both in vitro and by clinical studies. However, the potential anti-tumor effect of snail secretion was poorly investigated. In this report, our in vitro study showed that Helix aspersa maxima species snail slime (SS) could not only treat melanogenesis but also endowed with anti-tumoral activity against human melanoma cells. Indeed, SS reduced melanin content and tyrosinase activity on B16F10 cells with IC50 values of 288 μg/mL and 286 μg/mL, respectively, without altering cell viability. This effect was also observed, at a lesser extent, on human melanoma IGR-39 and SK-MEL-28 cell lines. On another hand, SS specifically inhibited the viability of IGR-39 and SK-MEL-28 cells associated to an apoptotic effect highlighted by PARP cleavage. It is worth to note that SS did not affect the viability of B16F10 cells and non tumorigenic HaCaT cells. Interestingly, this extract was found to inhibit migration and invasion of both human melanoma cells through reducing the expression of Matrix metalloproteinase MMP2. Snail slime also exerted a high inhibitory effect on IGR-39 cell adhesion through blocking the function of α2β1 (45%), αvβ3 (38%) integrins and by reducing the expression levels of αv and β1 integrins. The presented results shed light on the potential anti-melanoma effect of SS and support its use against skin diseases
CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis
International audienc
TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress
TRAIL induces selective tumor cell death through TRAIL-R1 and TRAIL-R2. Despite the fact that these receptors share high structural homologies, induction of apoptosis upon ER stress, cell autonomous motility and invasion have solely been described to occur through TRAIL-R2. Using the TALEN gene-editing approach, we show that TRAIL-R1 can also induce apoptosis during unresolved unfolded protein response (UPR). Likewise, TRAIL-R1 was found to co-immunoprecipitate with FADD and caspase-8 during ER stress. Its deficiency conferred resistance to apoptosis induced by thaspigargin, tunicamycin or brefeldin A. Our data also demonstrate that tumor cell motility and invasion-induced by TRAIL-R2 is not cell autonomous but induced in a TRAIL-dependant manner. TRAIL-R1, on the other hand, is unable to trigger cell migration owing to its inability to induce an increase in calcium flux. Importantly, all the isogenic cell lines generated in this study revealed that apoptosis induced TRAIL is preferentially induced by TRAIL-R1. Taken together, our results provide novel insights into the physiological functions of TRAIL-R1 and TRAIL-R2 and suggest that targeting TRAIL-R1 for anticancer therapy is likely to be more appropriate owing to its lack of pro-motile signaling capability