75 research outputs found

    Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle

    Get PDF
    The Maremmana cattle is an ancient Podolian-derived Italian breed raised in semi-wild conditions with distinctive morphological and adaptive traits. The aim of this study was to detect potential selection signatures in Maremmana using medium-density single nucleotide polymorphism array. Putative selection signatures were investigated combining three statistical approaches designed to quantify the excess of haplotype homozygosity either within (integrated haplotype score, iHS) or among pairs of populations (Rsb and XP-EHH), and contrasting the Maremmana with a single reference population composed of a pool of seven Podolian-derived Italian breeds. Overall, the three haplotype-based analyses revealed selection signatures distributed over 19 genomic regions. Of these, six relevant candidate regions were identified by at least two approaches. We found genomic signatures of selective sweeps spanning genes related to mitochondrial function, muscle development, growth, and meat traits (SCIN, THSD7A, ETV1, UCHL1, and MYOD1), which reflects the different breeding schemes between Maremmana (semi-wild conditions) and the other Podolian-derived Italian breeds (semi-extensive). We also identified several genes linked to Maremmana adaptation to the environment of the western-central part of Italy, known to be hyperendemic for malaria and other tick-borne diseases. These include several chemokine (C-C motif) ligand genes crucially involved in both innate and adaptive immune responses to intracellular parasite infections and other genes playing key roles in pulmonary disease (HEATR9, MMP28, and ASIC2) or strongly associated with malaria resistance/susceptibility (AP2B1). Our results provide a glimpse into diverse selection signatures in Maremmana cattle and can be used to enhance our understanding of the genomic basis of environmental adaptation in cattle

    Refining the genetic structure and relationships of European cattle breeds through meta-analysis of worldwide genomic SNP data, focusing on Italian cattle

    Get PDF
    The availability of genotyping assays has allowed the detailed evaluation of cattle genetic diversity worldwide. However, these comprehensive studies did not include some local European populations, including autochthonous Italian cattle. In this study, we assembled a large-scale, genome-wide dataset of single nucleotide polymorphisms scored in 3,283 individuals from 205 cattle populations worldwide to assess genome-wide autozygosity and understand better the genetic relationships among these populations. We prioritized European cattle, with a special focus on Italian breeds. Moderate differences in estimates of molecular inbreeding calculated from runs of homozygosity (FROH) were observed among domesticated bovid populations from different geographic areas, except for Bali cattle. Our findings indicated that some Italian breeds show the highest estimates of levels of molecular inbreeding among the cattle populations assessed in this study. Patterns of genetic differentiation, shared ancestry, and phylogenetic analysis all suggested the occurrence of gene flow, particularly among populations originating from the same geographical area. For European cattle, we observed a distribution along three main directions, reflecting the known history and formation of the analyzed breeds. The Italian breeds are split into two main groups, based on their historical origin and degree of conservation of ancestral genomic components. The results pinpointed that also Sicilian breeds, much alike Podolian derived-breeds, in the past experienced a similar non-European influence, with African and indicine introgression

    A comprehensive analysis of the genetic diversity and environmental adaptability in worldwide Merino and Merino-derived sheep breeds

    Get PDF
    BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes

    Evaluation and optimization of a commercial enzyme linked immunosorbent assay for detection of Chlamydophila pneumoniae IgA antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serologic diagnosis of <it>Chlamydophila pneumoniae </it>(Cpn) infection routinely involves assays for the presence of IgG and IgM antibodies to Cpn. Although IgA antibodies to Cpn have been found to be of interest in the diagnosis of chronic infections, their significance in serological diagnosis remains unclear. The microimmunofluorescence (MIF) test is the current method for the measurement of Cpn antibodies. While commercial enzyme linked immunosorbent assays (ELISA) have been developed, they have not been fully validated. We therefore evaluated and optimized a commercial ELISA kit, the SeroCP IgA test, for the detection of Cpn IgA antibodies.</p> <p>Methods</p> <p>Serum samples from 94 patients with anti-Cpn IgG titers ≄ 256 (study group) and from 100 healthy blood donors (control group) were tested for the presence of IgA antibodies to Cpn, using our in-house MIF test and the SeroCP IgA test. Two graph receiver operating characteristic (TG-ROC) curves were created to optimize the cut off given by the manufacturer.</p> <p>Results</p> <p>The MIF and SeroCP IgA tests detected Cpn IgA antibodies in 72% and 89%, respectively, of sera from the study group, and in 9% and 35%, respectively, of sera from the control group. Using the MIF test as the reference method and the cut-off value of the ELISA test specified by the manufacturer for seropositivity and negativity, the two tests correlated in 76% of the samples, with an agreement of Ƙ = 0.54. When we applied the optimized cut-off value using TG-ROC analysis, 1.65, we observed better concordance (86%) and agreement (0.72) between the MIF and SeroCP IgA tests.</p> <p>Conclusion</p> <p>Use of TG-ROC analysis may help standardize and optimize ELISAs, which are simpler, more objective and less time consuming than the MIF test. Standardization and optimization of commercial ELISA kits may result in better performance.</p

    Correlation properties of binary sequences generated by the logistic map-application to DS-CDMA

    No full text
    In this paper, we will show that a simple one dimension non-linear map allows generating symbolic sequences that have better statistical properties then classical pseudo random ones. Using performance criterion that is suitable for CDMA application, the performances of symbolic sequences will be compared to the performances of Gold ones. This comparison will show that non-linear systems generate sequences that allow a signal to noise ratio better then pseudo-random sequence generated by linear shift registers

    Exploring Unstsable Periodic Orbits Using Super Stable Ones

    No full text
    This paper deals with Super Stable Orbits (SSOs) of the logistic map, and how they can be used to describe Unstable Periodic Orbits (UPOs).~We will show that Unstable Periodic Orbits have almost the same correlation properties as Super Stable ones from which they were born, and this will be confirmed by simulations. We will present one application, a method to detect UPOs merged in a strange attractor

    Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity in local North African cattle

    Get PDF
    Natural-driven selection is supposed to have left detectable signatures on the genome of North African cattle which are often characterized by the fixation of genetic variants associated with traits under selection pressure and/or an outstanding genetic differentiation with other populations at particular loci. Here, we investigate the population genetic structure and we provide a first outline of potential selection signatures in North African cattle using single nucleotide polymorphism genotyping data. After comparing our data to African, European and indicine cattle populations, we identified 36 genomic regions using three extended haplotype homozygosity statistics and 92 outlier markers based on Bayescan test. The 13 outlier windows detected by at least two approaches, harboured genes (e.g. GH1, ACE, ASIC3, HSPH1, MVD, BCL2, HIGD2A, CBFA2T3) that may be involved in physiological adaptations required to cope with environmental stressors that are typical of the North African area such as infectious diseases, extended drought periods, scarce food supply, oxygen scarcity in the mountainous areas and high-intensity solar radiation. Our data also point to candidate genes involved in transcriptional regulation suggesting that regulatory elements had also a prominent role in North African cattle response to environmental constraints. Our study yields novel insights into the unique adaptive capacity in these endangered populations emphasizing the need for the use of whole genome sequence data to gain a better understanding of the underlying molecular mechanisms

    Etude exacte des conditions de convergence des Ă©galiseurs

    No full text
    Il s'agit de déterminer les conditions de convergence pour un égaliseur adaptatif transverse et de longueur finie travaillant en phase d'apprentissage optimisé avec l'algorithme du gradient stochastique dans le cas d'un canal transverse d'ordre fini. Ceci traite la convergence en moyenne, en moyenne quadratique et la convergence presque sûre. On a pu déterminer une borne suffisante sur le pas d'adaptation critique (le pas à partir duquel l'algorithme diverge) pour différents types de canaux avec ou sans bruit. On a pu mettre en cause l'approche classique en comparant sa borne avec la borne exacte
    • 

    corecore