33 research outputs found

    EPRL/FK Group Field Theory

    Full text link
    The purpose of this short note is to clarify the Group Field Theory vertex and propagators corresponding to the EPRL/FK spin foam models and to detail the subtraction of leading divergences of the model.Comment: 20 pages, 2 figure

    Two and four-loop β\beta-functions of rank 4 renormalizable tensor field theories

    Full text link
    A recent rank 4 tensor field model generating 4D simplicial manifolds has been proved to be renormalizable at all orders of perturbation theory [arXiv:1111.4997 [hep-th]]. The model is built out of ϕ6\phi^6 (ϕ(1/2)6\phi^6_{(1/2)}), ϕ4\phi^4 (ϕ(1)4\phi^4_{(1)}) interactions and an anomalous term (ϕ(2)4\phi^4_{(2)}). The β\beta-functions of this model are evaluated at two and four loops. We find that the model is asymptotically free in the UV for both the main ϕ(1/2)6\phi^6_{(1/2)} interactions whereas it is safe in the ϕ(1)4\phi^4_{(1)} sector. The remaining anomalous term turns out to possess a Landau ghost.Comment: 31 pages, 31 figures; improved versio

    Renormalization of the commutative scalar theory with harmonic term to all orders

    Full text link
    The noncommutative scalar theory with harmonic term (on the Moyal space) has a vanishing beta function. In this paper, we prove the renormalizability of the commutative scalar field theory with harmonic term to all orders by using multiscale analysis in the momentum space. Then, we consider and compute its one-loop beta function, as well as the one on the degenerate Moyal space. We can finally compare both to the vanishing beta function of the theory with harmonic term on the Moyal space.Comment: 16 page

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio

    Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model

    Full text link
    A dual formulation of group field theories, obtained by a Fourier transform mapping functions on a group to functions on its Lie algebra, has been proposed recently. In the case of the Ooguri model for SO(4) BF theory, the variables of the dual field variables are thus so(4) bivectors, which have a direct interpretation as the discrete B variables. Here we study a modification of the model by means of a constraint operator implementing the simplicity of the bivectors, in such a way that projected fields describe metric tetrahedra. This involves a extension of the usual GFT framework, where boundary operators are labelled by projected spin network states. By construction, the Feynman amplitudes are simplicial path integrals for constrained BF theory. We show that the spin foam formulation of these amplitudes corresponds to a variant of the Barrett-Crane model for quantum gravity. We then re-examin the arguments against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page
    corecore