12 research outputs found

    Electrical Resistivity Behavior and VRH Transport Mechanism in Semiconducting La0.6Sr0.4Mn1−2x Fe x Cr x O3 (0.10≀x≀0.25) Manganites

    No full text
    International audienceThe transport properties and conduction mechanism in La0.6Sr0.4Mn1−2x Fe x Cr x O3 (0≀x≀0.3) have been investigated. The undoped samples show metal-semiconductor transition with a peak of resistivity at a temperature T P , whereas for all doped compounds the semiconducting behavior persists in the whole temperature range. The insertion of Cr3+ and Fe3+ ions leads to the increase of resistivity because the simultaneous substitution of Fe3+ and Cr3+ for Mn3+ reduces the number of available hopping sites for the Mn e g↑ electron and suppresses the double-exchange mechanism. It was found that the transport mechanism for substituted samples is dominated by the variable range hopping of small polarons between localized states in a model where the various parameters estimated from Mott's relation obey the variable range hopping (VRH) mechanism

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Structural and magnetic properties of (La0.70−xYx)Ba0.30Mn1−xFexO3 perovskites simultaneously doped on A and B sites (0.0 ≀ x ≀ 0.30)

    No full text
    International audienceWe present the structural and magnetic properties of polycrystalline samples of the solid solution (La0.70−xYx)Ba0.30Mn1−xFexO3 (x = 0.00, 0.10, 0.20 and 0.30). Samples have been prepared by a conventional solid-state reaction method in air. Rietveld refinements of the X-ray powder diffraction data show a structural transition from rhombohedral (View the MathML sourceR3ÂŻc) to orthorhombic (Pbnm) symmetry when x ≄ 0.10. The ZFC, FC and M(H) measurements lead to conclude that the samples with x ≄ 0.10 behave like spin-glass systems. The substitution of Mn3+ ions by Fe3+ ions triggers antiferromagnetic interactions between the Fe3+ and Mn4+ spins. The values of the magnetization (M(H)) decrease when increasing the Fe content. On the basis of a simple model of Mn and Fe spins pointing in opposite directions, we found the experimental data close to the calculated values, confirming the antiferromagnetic alignment between Fe and Mn moments

    Critical behavior and magnetic entropy change in the La0.6Sr0.4Mn0.8Fe0.1Cr0.1O3 perovskite

    No full text
    International audienceCritical behavior in the La0.6Sr0.4Mn0.8Fe0.1Cr0.1O3 ceramics was studied using magnetization methods. Results show that the paramagnetic-ferromagnetic transition is of second order. Based on the critical behavior analysis using the Banerjee criterion and the Kouvel-Fisher method, we find the critical exponents: ÎČ=0.395±0.010, Îł=1.402±0.010, and ÎŽ=5.208±0.007, for which the magnetic interaction is satisfied within the three-dimensional Heisenberg model. Results indicate the presence of short-range interactions. The magnetic entropy change (−ΔSM) reached maximum values of 1.75, 1.45, 1.15, 0.8 and 0.43 J Kg−1 K−1 under a magnetic field variation of 5, 4, 3, 2 and 1 T, respectively. Nevertheless, these (−ΔSM) values are much low for any potential application at this moment. The nature of this phenomenon is discussed in relation to the characteristics of the magnetic phase transition and critical exponents

    Effect of the simultaneous substitution of two transition metals on the structural, magnetic and electrical properties of La0.6Sr0.4Mn1−2xCrxFexO3

    No full text
    International audienceThe structural, magnetic and electrical properties of Cr and Fe simultaneously substituted in the perovskite La0.6Sr0.4Mn1−2xCrxFexO3 have been studied. The presence of Cr and Fe had no significant effect on the structural properties. Curie temperature and saturation magnetization decrease with increase in Cr and Fe contents. For x=0.20 and 0.25, a steep drop of zero field-cooled (ZFC) magnetization at low temperature signifies the formation of cluster- or spin-glass state. A weak hysteresis at low fields seems to be an indication of phase separation. All the resulting magnetization curves can be explained by a superposition of both ferromagnetic and antiferromagnetic components. All the samples are semiconducting throughout the temperature range studied. Resistivity can be described by the adiabatic small polaron hopping and the variable range hopping model. It was found that the transport mechanism is dominated by the VRH model with an increase of Mott localization energy, which explains the increase of resistivity

    Transport behavior and mechanism of conduction of simultaneously substituted Y and Fe in La0.7Ba0.3MnO3 perovskite

    No full text
    International audienceThe electrical properties and the mechanism of conduction of the simultaneously substituted La0.7−xYxBa0.3Mn1−xFexO3 perovskite (0≀x≀0.30) have been studied. The insertion of Y3+ and Fe3+ ions in the parent compound La0.7Ba0.3MnO3 leads to an increase of the resistivity. The undoped sample (x=0) shows a metallic behavior, which can be fitted by the relation ρ(T)=ρ0+ρ2T2+ρ4.5T4.5, indicating the importance of electron-magnon scattering effects in this material. All the other samples (x≄0.10) are semiconductors throughout the studied temperature range (80-290 K). Several models have been used to fit their temperature-dependent resistivity: thermal activation, adiabatic nearest-neighbor hopping of small polarons (Holstein theory) and variable range hopping (VRH) models. The fits show that the electronic transport in semiconducting La0.7−xYxBa0.3Mn1−xFexO3 is well described and dominated by the VRH mechanism, for which the hopping distance (a) grows with increasing Fe3+ doping, thus increasing the average hopping energy W

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore