841 research outputs found

    Well-being and activity-based models

    Get PDF
    We present empirical and theoretical analyses to investigate the relationship between happiness (or subjective well-being) and activity participation and develop a framework for using well-being data to enhance activity-based travel demand models. The overriding hypothesis is that activities are planned and undertaken to satisfy needs so as to maintain or enhance subjective well-being. The empirical analysis consists of the development of a structural equations exploratory model of activity participation and happiness using data from a cross-sectional survey of a sample of commuters. The model reveals significant correlations between happiness and behavior for different types of activities: higher propensity of activity participation is associated with greater activity happiness and greater satisfaction with travel to the activity. The theoretical analysis consists of the development of a modeling framework and measures for the incorporation of well-being within activity-based travel demand models. The motivation is that activity pattern models have been specified in ad-hoc ways in practice as a function of mobility, lifestyle, and accessibility variables. We postulate that well-being is the ultimate goal of activity patterns which are driven by needs and propose two extensions of activity pattern models. The first extension consists of the use of well-being measures as indicators of the utility of activity patterns (in addition to the usual choice indicators) within a random utility modeling framework. The second extension models conceptually the behavioral process of activity generation based on needs satisfaction. We present an example of an operational activity pattern model and propose well-being measures for enhancing it.New England University Transportation Cente

    Incorporating social interaction into hybrid choice models

    Get PDF
    The aim of this paper is to develop a methodological framework for the incorporation of social interaction effects into choice models. The developed method provides insights for modeling the effect of social interaction on the formation of psychological factors (latent variables) and on the decision-making process. The assumption is based on the fact that the way the decision maker anticipates and processes the information regarding the behavior and the choices exhibited in her/his social environment, affects her/his attitudes and perceptions, which in turn affect her/his choices. The proposed method integrates choice models with decision makers’ psychological factors and latent social interaction. The model structure is simultaneously estimated providing an improvement over sequential methods as it provides consistent and efficient estimates of the parameters. The methodology is tested within the context of a household aiming to identify the social interaction effects between teenagers and their parents regarding walking-loving behavior and then the effect of this on mode to school choice behavior. The sample consists of 9,714 participants aged from 12 to 18 years old, representing 21 % of the adolescent population of Cyprus. The findings from the case study indicate that if the teenagers anticipate that their parents are walking lovers, then this increases the probability of teenagers to be walking-lovers too and in turn to choose walking to school. Generally, the findings from the application result in: (a) improvements in the explanatory power of choice models, (b) latent variables that are statistically significant, and (c) a real-world behavioral representation that includes the social interaction effect

    Using Data From the Web to Predict Public Transport Arrivals Under Special Events Scenarios

    Get PDF
    The Internet has become the preferred resource to announce, search, and comment about social events such as concerts, sports games, parades, demonstrations, sales, or any other public event that potentially gathers a large group of people. These planned special events often carry a potential disruptive impact to the transportation system, because they correspond to nonhabitual behavior patterns that are hard to predict and plan for. Except for very large and mega events (e.g., Olympic games, football world cup), operators seldom apply special planning measures for two major reasons: The task of manually tracking which events are happening in large cities is labor-intensive; and, even with a list of events, their impact is hard to estimate, especially when more than one event happens simultaneously. In this article, we utilize the Internet as a resource for contextual information about special events and develop a model that predicts public transport arrivals in event areas. In order to demonstrate the feasibility of this solution for practitioners, we apply off-the-shelf techniques both for Internet data collection and for the prediction model development. We demonstrate the results with a case study from the city-state of Singapore using public transport tap-in/tap-out data and local event information obtained from the Internet. Keywords: Data mining; Demand Prediction; Public Transport; Smartcard; Urban Computing; Web Minin

    Cognitive Cost in Route Choice with Real-Time Information: An Exploratory Analysis

    Get PDF
    Real-time traffic information is increasingly available to support route choice decisions by reducing the travel time uncertainty. However it is likely that a traveler cannot assess all available information on all alternative routes due to time constraints and limited cognitive capacity. This paper presents a model that is consistent with a general network topology and can potentially be estimated based on revealed preference data. It explicitly takes into account the information acquisition and the subsequent path choice. The decision to acquire information is assumed to be based on the cognitive cost involved in the search and the expected benefit defined as the expected increase in utility after the search. A latent class model is proposed, where the decision to search or not to search and the depth of the search are latent and only the final path choices are observed. A synthetic data set is used for the purpose of validation and ease of illustration. The data are generated from the postulated cognitive-cost model, and estimation results show that the true values of the parameters can be recovered with enough variability in the data. Two other models with simplifying assumptions of no information and full information are also estimated with the same set of data with significantly biased path choice utility parameters. Prediction results show that a smaller cognitive cost encourages information search on risky and fast routes and thus higher shares on those routes. As a result, the expected average travel time decreases and the variability increases. The no-information and full-information models are extreme cases of the more general cognitive-cost model in some cases, but not generally so, and thus the increasing ease of information acquisition does not necessarily warrant a full-information model

    The concept and impact analysis of a flexible mobility on demand system

    Get PDF
    This paper introduces an innovative transportation concept called Flexible Mobility on Demand (FMOD), which provides personalized services to passengers. FMOD is a demand responsive system in which a list of travel options is provided in real-time to each passen- ger request. The system provides passengers with flexibility to choose from a menu that is optimized in an assortment optimization framework. For operators, there is flexibility in terms of vehicle allocation to different service types: taxi, shared-taxi and mini-bus. The allocation of the available fleet to these three services is carried out dynamically so that vehicles can change roles during the day. The FMOD system is built based on a choice model and consumer surplus is taken into account in order to improve passenger satisfac- tion. Furthermore, profits of the operators are expected to increase since the system adapts to changing demand patterns. In this paper, we introduce the concept of FMOD and present preliminary simulation results. It is shown that the dynamic allocation of the vehicles to different services provides significant benefits over static allocation. Furthermore, it is observed that the trade-off between consumer surplus and operator’s profit is critical. The optimization model is adapted in order to take into account this trade-off by control- ling the level of passenger satisfaction. It is shown that with such control mechanisms FMOD provides improved results in terms of both profit and consumer surplus

    A dynamic traffic assignment model for highly congested urban networks

    Get PDF
    The management of severe congestion in complex urban networks calls for dynamic traffic assignment (DTA) models that can replicate real traffic situations with long queues and spillbacks. DynaMIT-P, a mesoscopic traffic simulation system, was enhanced and calibrated to capture the traffic characteristics in a sub-area of Beijing, China. The network had 1698 nodes and 3180 directed links in an area of around 18 square miles. There were 2927 non-zero origin–destination (OD) pairs and around 630,000 vehicles were simulated over 4 h of the morning peak. All demand and supply parameters were calibrated simultaneously using sensor counts and floating car travel time data. Successful calibration was achieved with the Path-size Logit route choice model, which accounted for overlapping routes. Furthermore, explicit representations of lane groups were required to properly model traffic delays and queues. A modified treatment of acceptance capacity was required to model the large number of short links in the transportation network (close to the length of one vehicle). In addition, even though bicycles and pedestrians were not explicitly modeled, their impacts on auto traffic were captured by dynamic road segment capacities.Beijing Transportation Research Cente

    Vehicle Tracking Using the k-shortest Paths Algorithm and Dual Graphs

    Get PDF
    Vehicle trajectory descriptions are required for the development of driving behavior models and in the calibration of several traffic simulation applications. In recent years, the progress in aerial sensing technologies and image processing algorithms allowed for easier collection of such detailed traffic datasets and multiple-object tracking based on constrained flow optimization has been shown to produce very satisfactory results, even in high density traffic situations. This method uses individual image features collected for each candidate vehicle as criteria in the optimization process. When dealing with poor image quality or low ground sampling distances, feature-based optimization may produce unreal trajectories. In this paper we extend the application of the k-shortest paths algorithm for multiple-object tracking to the motion-based optimization. A graph of possible connections between successive candidate positions was built using a first level criteria based on speeds. Dual graphs were built to account for acceleration-based and acceleration variation-based criteria. With this framework both longitudinal and lateral motion-based criteria are contemplated in the optimization process. The k-shortest disjoints paths algorithm was then used to determine the optimal set of trajectories (paths) on the constructed graph. The proposed algorithm was successfully applied to a vehicle positions dataset, collected through aerial remote sensing on a Portuguese suburban motorway. Besides the importance of a new trajectory dataset that will allow for the estimation of new behavioral models and the validation of existing ones, the motion-based multiple-vehicle tracking algorithm allowed for a fast and effective processing using a simple optimization formulation. Keywords: vehicle trajectories; image processing; driver behaviour; remote sensing

    Change of Scale and Forecasting with the Control-Function Method in Logit Models

    Get PDF
    Endogeneity is a model misspecification that precludes the consistent estimation of the model parameters. The control-function method is the most suitable tool to address endogeneity for several discrete choice models that are relevant in transportation research. However, the estimators obtained with the control-function method are consistent only up to a scale. In this paper, we first depict the determinants of this change of scale by adapting an existing result for omitted orthogonal attributes in logit models. Then, we study the problem of forecasting under these circumstances. We show that a procedure proposed in previous literature may lead to significant biases, and we suggest novel alternatives to be used with synthetic populations. We use Monte Carlo experimentation and real data on residential location choice to illustrate these results. The paper finishes by summarizing the findings of this investigation and suggesting future lines of research in this area.MIT-Portugal Progra

    Stop Detection in Smartphone-based Travel Surveys

    Get PDF
    Future Mobility Sensing (FMS) is a smartphone-based travel survey system that employs a web-based prompted-recall interaction to correct automatically inferred information. A key component of FMS is a stop detection algorithm that derives the users' activity locations and times based on the raw data collected by their phones. Output of this algorithm is presented in the Activity Diary for the users to validate, and its accuracy has a significant impact on user burden. In this paper, we present FMS' stop detection algorithm and its performance during testing by volunteers and public users during a large-scale field test

    W–SPSA in Practice: Approximation of Weight Matrices and Calibration of Traffic Simulation Models

    Get PDF
    The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered. This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively. Keywords: calibration algorithms; dynamic traffic assignment; microscopic traffic simulation; large–scale applications; optimisation; heuristic
    • …
    corecore