669 research outputs found
Spontaneous transition to a fast 3D turbulent reconnection regime
We show how the conversion of magnetic field energy via magnetic reconnection
can progress in a fully three-dimensional, fast, volume-filling regime. An
initial configuration representative of many laboratory, space and
astrophysical plasmas spontaneously evolves from the well-known regime of slow,
resistive reconnection to a new regime that allows to explain the rates of
energy transfer observed in jets emitted from accretion disks, in stellar/solar
flare processes as well as in laboratory plasmas. This process does not require
any pre-existing turbulence seed which often is not observed in the host
systems prior to the onset of the energy conversion. The dynamics critically
depends on the interplay of perturbations developing along the magnetic field
lines and across them, a process possible only in three-dimensions. The
simulations presented here are the first able to show this transition in a
fully three-dimensional configuration.Comment: 6 pages, 6 figure
A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software
Many Control Systems are indeed Software Based Control Systems, i.e. control
systems whose controller consists of control software running on a
microcontroller device. This motivates investigation on Formal Model Based
Design approaches for automatic synthesis of control software.
Available algorithms and tools (e.g., QKS) may require weeks or even months
of computation to synthesize control software for large-size systems. This
motivates search for parallel algorithms for control software synthesis.
In this paper, we present a Map-Reduce style parallel algorithm for control
software synthesis when the controlled system (plant) is modeled as discrete
time linear hybrid system. Furthermore we present an MPI-based implementation
PQKS of our algorithm. To the best of our knowledge, this is the first parallel
approach for control software synthesis.
We experimentally show effectiveness of PQKS on two classical control
synthesis problems: the inverted pendulum and the multi-input buck DC/DC
converter. Experiments show that PQKS efficiency is above 65%. As an example,
PQKS requires about 16 hours to complete the synthesis of control software for
the pendulum on a cluster with 60 processors, instead of the 25 days needed by
the sequential algorithm in QKS.Comment: To be submitted to TACAS 2013. arXiv admin note: substantial text
overlap with arXiv:1207.4474, arXiv:1207.409
Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections
To measure the magnetic field strength in the solar corona, we examined 10
fast (> 1000 km/s) limb CMEs which show clear shock structures in SOHO/LASCO
images. By applying piston-shock relationship to the observed CME's standoff
distance and electron density compression ratio, we estimated the Mach number,
Alfven speed, and magnetic field strength in the height range 3 to 15 solar
radii (Rs). Main results from this study are: (1) the standoff distance
observed in solar corona is consistent with those from a magnetohydrodynamic
(MHD) model and near-Earth observations; (2) the Mach number as a shock
strength is in the range 1.49 to 3.43 from the standoff distance ratio, but
when we use the density compression ratio, the Mach number is in the range 1.47
to 1.90, implying that the measured density compression ratio is likely to be
underestimated due to observational limits; (3) the Alfven speed ranges from
259 to 982 km/s and the magnetic field strength is in the range 6 to 105 mG
when the standoff distance is used; (4) if we multiply the density compression
ratio by a factor of 2, the Alfven speeds and the magnetic field strengths are
consistent in both methods; (5) the magnetic field strengths derived from the
shock parameters are similar to those of empirical models and previous
estimates.Comment: Accepted for publication in ApJ, 11 Figures, 1 Tabl
On polyhedral projection and parametric programming
Submitted versio
Observability of Switched Linear Systems in Continuous Time
We study continuous-time switched linear systems with unobserved and exogeneous mode signals. We analyze the observability of the initial state and initial mode under arbitrary switching, and characterize both properties in both autonomous and non-autonomous cases
Exploring the neutrino mass matrix at M_R scale
We discuss the neutrino mass matrix which predicts zero or small values of
|V_{13}| in MSSM and found the inequality, sin^2 2theta_{12} <= sin^2
2theta_sol, where sin^2 2theta_{12} is the mixing angle at M_R scale and sin^2
2theta_{sol} is the value determined by the solar neutrino oscillation. This
constraint says that the model which predicts a larger value of tan^2
theta_{sol} at M_R than the experimental value is excluded. In particular, the
bi-maximal mixing scheme at M_R scale is excluded, from the experimental value
tan^2 theta_sol<1. In this model, |V_{13}| and a Dirac phase at m_Z are induced
radiatively and turn out to be not small. The effective neutrino mass is
expected to be of order 0.05 eV.Comment: revtex4, 20 pages, 6 figure
Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment
Initial results are presented from CHOOZ, a long-baseline reactor-neutrino
vacuum-oscillation experiment. Electron antineutrinos were detected by a liquid
scintillation calorimeter located at a distance of about 1 km. The detector was
constructed in a tunnel protected from cosmic rays by a 300 MWE rock
overburden. This massive shielding strongly reduced potentially troublesome
backgrounds due to cosmic-ray muons, leading to a background rate of about one
event per day, more than an order of magnitude smaller than the observed
neutrino signal. From the statistical agreement between detected and expected
neutrino event rates, we find (at 90% confidence level) no evidence for
neutrino oscillations in the electron antineutrino disappearance mode for the
parameter region given approximately by deltam**2 > 0.9 10**(-3) eV**2 for
maximum mixing and (sin(2 theta)**2) > 0.18 for large deltam**2.Comment: 13 pages, Latex, submitted to Physics Letters
- …