4 research outputs found

    Screening, identification, and antibiotic activity of secondary metabolites of Penicillium sp. LPB2019K3-2 isolated from endemic amphipods of Lake Baikal

    Get PDF
    This study aimed to assess the influence of nutrient media content on the production of antibiotics and the ability of water fungi isolated from lake Baikal to synthesize novel natural products. Interest in this topic stems from the high demand for new drugs, and studies are carried out via the screening of new natural products with biological activity produced by unstudied or extremophilic microorganisms. For this study, a strain of Penicillium sp. was isolated from endemic Baikal phytophagous amphipod species. Here, we identified natural products using the following classical assays: biotechnological cultivation, MALDI identification of the strain, natural product extraction, antimicrobial activity determination, and modern methods such as HPLC-MS for the dereplication and description of natural products. It was found that many detected metabolites were not included in the most extensive database. Most of the identified metabolites were characterized by their biological activity and demonstrated antibiotic activity against model Gram-positive and Gram-negative bacteria. The isolated strain of water fungus produced penicolinate B, meleagrin A, austinoneol A, andrastin A, and other natural products. Additionally, we show that the synthesis of low-molecular-weight natural products depends on the composition of the microbiological nutrient media used for cultivation. Thus, although the golden age of antibiotics ended many years ago and microscopic fungi are well studied producers of known antibiotics, the water fungi of the Lake Baikal ecosystem possess great potential in the search for new natural products for the development of new drugs. These natural products can become new pharmaceuticals and can be used in therapy to treat new diseases such as SARS, MERS, H5N1, etc

    FIRST REPORT ON TRUFFLE-INHABITING FUNGI AND METAGENOMIC COMMUNITIES OF TUBER AESTIVUM COLLECTED IN RUSSIA

    Get PDF
    Truffles are one of the least studied groups of fungi in terms of their biological and biotechnological aspects. This study aimed to isolate truffle-inhabiting fungi and assess the metagenomic communities of the most common Russian summer truffle, Tuber aestivum. This study is the first to characterize the biodiversity of prokaryotic and eukaryotic organisms living in the truffle T. aestivum using molecular analysis and sequencing. Plant pathogens involved in a symbiotic relationship with truffles were identified by sequencing the hypervariable fragments of the 16S rRNA and 18S rRNA genes. In addition, some strains of fungal symbionts and likely pathogens were isolated and recognized for the first time from the truffles. This study also compared and characterized the general diversity and distribution of microbial taxa of T. aestivum collected in Russia and Europe. The results revealed that the Russian and European truffle study materials demonstrated high similarity. In addition to the truffles, representatives of bacteria, fungi, and protists were found in the fruiting bodies. Many of these prokaryotic and eukaryotic species inhabiting truffles might influence them, help them form mycorrhizae with trees, and regulate biological processes. Thus, truffles are interesting and promising sources for modern biotechnological and agricultural studies

    The Use of Baikal Psychrophilic Actinobacteria for Synthesis of Biologically Active Natural Products from Sawdust Waste

    No full text
    One of the relevant areas in microbiology and biotechnology is the study of microorganisms that induce the destruction of different materials, buildings, and machines and lead to negative effects. At the same time, the positive ecological effects of degradation can be explained by the detoxication of industrial and agricultural wastes, chemical substances, petroleum products, xenobiotics, pesticides, and other chemical pollutants. Many of these industrial wastes include hard-to-degrade components, such as lignocellulose or plastics. The biosynthesis of natural products based on the transformation of lignocellulosic wastes is of particular interest. One of the world’s unique ecosystems is presented by Lake Baikal. This ecosystem is characterized by the highest level of biodiversity, low temperatures, and a high purity of the water. Here, we studied the ability of several psychrophilic representatives of Baikal Actinobacteria to grow on sawdust wastes and transform them into bioactive natural products. Different strains of both widely spread genus of Actinobacteria and rare genera of Actinobacteria were tested. We used the LC-MS methods to show that Actinobacteria living in sawmill wastes can produce both known and novel natural products with antibiotic activity. We demonstrated that the type of sawmill wastes and their concentration influence the Actinobacteria biosynthetic potential. We have shown for the first time that the use of Baikal psychrophilic microorganisms as a factory for biodegradation is applicable for the transformation of lignocellulosic wastes. Thus, the development of techniques for screening novel natural products leads to an elaboration on the active ingredients for novel drugs

    The Use of Baikal Psychrophilic Actinobacteria for Synthesis of Biologically Active Natural Products from Sawdust Waste

    No full text
    One of the relevant areas in microbiology and biotechnology is the study of microorganisms that induce the destruction of different materials, buildings, and machines and lead to negative effects. At the same time, the positive ecological effects of degradation can be explained by the detoxication of industrial and agricultural wastes, chemical substances, petroleum products, xenobiotics, pesticides, and other chemical pollutants. Many of these industrial wastes include hard-to-degrade components, such as lignocellulose or plastics. The biosynthesis of natural products based on the transformation of lignocellulosic wastes is of particular interest. One of the world’s unique ecosystems is presented by Lake Baikal. This ecosystem is characterized by the highest level of biodiversity, low temperatures, and a high purity of the water. Here, we studied the ability of several psychrophilic representatives of Baikal Actinobacteria to grow on sawdust wastes and transform them into bioactive natural products. Different strains of both widely spread genus of Actinobacteria and rare genera of Actinobacteria were tested. We used the LC-MS methods to show that Actinobacteria living in sawmill wastes can produce both known and novel natural products with antibiotic activity. We demonstrated that the type of sawmill wastes and their concentration influence the Actinobacteria biosynthetic potential. We have shown for the first time that the use of Baikal psychrophilic microorganisms as a factory for biodegradation is applicable for the transformation of lignocellulosic wastes. Thus, the development of techniques for screening novel natural products leads to an elaboration on the active ingredients for novel drugs
    corecore