13,649 research outputs found

    Calculation of the pentaquark width by QCD sum rule

    Get PDF
    The pentaquark width is calculated in QCD sum rules. Result for ΓΘ\Gamma_{\Theta} show, that ΓΘ\Gamma_{\Theta} can vary in the region less than 1MeVMeV. The main conclusion is, that if pentaquark is genuine states then sum rules really predict the narrow width of pentaquark θ+\theta^+, and the suppression of the width is both parametrical and numerical.Comment: 8 Ppages, 3 figures,the numerical error was corrected, two figures are modified. In the limit of errors the result did not change significantl

    Perturbation of a lattice spectral band by a nearby resonance

    Full text link
    A soluble model of weakly coupled "molecular" and "nuclear" Hamiltonians is studied in order to exhibit explicitly the mechanism leading to the enhancement of fusion probability in case of a narrow near-threshold nuclear resonance. We, further, consider molecular cells of this type being arranged in lattice structures. It is shown that if the real part of the narrow nuclear resonance lies within the molecular band generated by the intercellular interaction, an enhancement, proportional to the inverse width of the nuclear resonance, is to be expected.Comment: RevTeX, 2 figures within the file. In May 2000 the title changed and some minor corrections have been don

    Pion Light-Cone Wave Functions and Light-Front Quark Model

    Get PDF
    We discuss a relation between the light-front quark model and QCD. We argue that this model can be used for an evaluation of the light-cone wave functions for moderate values of "u", but that it is inapplicable for this purpose in the region near the ends points u=0,1. We find additional support for a recent analysis in which it was claimed that the twist-two pion wave function attains its asymptotic form. The asymptotic twist-four two-particle wave function is also in good agreement with the light-front quark model.Comment: 11 pages and 2 PS-figures in one gz-compressed .tar file. Minor chang

    Vector, Axial, Tensor and Pseudoscalar Vacuum Susceptibilities

    Get PDF
    Using a recently developed three-point formalism within the method of QCD Sum Rules we determine the vacuum susceptibilities needed in the two-point formalism for the coupling of axial, vector, tensor and pseudoscalar currents to hadrons. All susceptibilities are determined by the space-time scale of condensates, which is estimated from data for deep inelastic scattering on nucleons
    corecore