1 research outputs found

    Nuclear electron capture rate in stellar interiors and the case of 7Be

    Full text link
    Nuclear electron capture rate from continuum in an astrophysical plasma environment (like solar core) is calculated using a modified Debye-Huckel screening potential and the related non-Gaussian q-distribution of electron momenta. For q=1 the well-known Debye-Huckel results are recovered. The value of q can be derived from the fluctuation of number of particles and temperature inside the Debye sphere. For 7Be continuum electron capture in solar core, we find an increase of 7 -- 10 percent over the rate calculated with standard Debye-Huckel potential. The consequence of this results is a reduction of the same percentage of the SSM 8B solar neutrino flux, leaving unchanged the SSM 7Be flux.Comment: 8 pages, 1 figure, IOP macro style, submitted to JP
    corecore