14,743 research outputs found

    Generalized Density Matrix Revisited: Microscopic Approach to Collective Dynamics in Soft Spherical Nuclei

    Full text link
    The generalized density matrix (GDM) method is used to calculate microscopically the parameters of the collective Hamiltonian. Higher order anharmonicities are obtained consistently with the lowest order results, the mean field [Hartree-Fock-Bogoliubov (HFB) equation] and the harmonic potential [quasiparticle random phase approximation (QRPA)]. The method is applied to soft spherical nuclei, where the anharmonicities are essential for restoring the stability of the system, as the harmonic potential becomes small or negative. The approach is tested in three models of increasing complexity: the Lipkin model, model with factorizable forces, and the quadrupole plus pairing model.Comment: submitted to Physical Review C on 08 May, 201

    Hexadecapole Interaction and the Delta I=4 Staggering Effect in Rotational Bands

    Full text link
    A role of the multipole interaction in the description of the I\triangle I=4 staggering phenomenon is investigated in a model consisting of a single-jj shell filled by identical nucleons. Exact diagonalization of the quadrupole-plus-hexadecapole Hamiltonian shows that the hexadecapole-hexadecapole interaction can produce a I\triangle I=4 periodicity in the yrast sequence.Comment: revised version with technical changes only, to be published in Physica Scripta, latex, 4 pages, 3 PostScript figures available on request from [email protected], preprint No. IFT/18/9

    Could we learn more about HERA high Q2Q^2 anomaly from LEP200 and TEVATRON? R-parity violation scenario

    Get PDF
    The excess of high Q2Q^2 events at HERA reported in the early 1997 by H1 and ZEUS collaborations has become the subject of extensive studies in the framework of several models related to new physics. Here we concentrate on the most promising, from our point of view, model describing HERA anomaly. We update our previous analysis and take into account new HERA statistics of the 1997 year. HERA events are considered within the R-parity broken SUSY model for a specific scenario with several non-zero couplings. R-parity broken SUSY with several non-zero couplings could explain both high Q2e++jetsQ^2 e^+ + jets and μ++jets\mu^+ + jets observed at HERA. The consequence of such a particular scenario is the excess of high Q2Q^2 di- or tri-jet events at HERA. The relation of this scenario for LEP and TEVATRON colliders is considered. This study shows that if a squark resonance does take place at HERA, supersymmetry with broken R-parity can be revealed at either LEP200 or TEVATRON in the near future.Comment: 15 pages, LaTeX file with 9 eps figure

    Multiple Scattering Theory for Slow Neutrons (from thermal to ultracold)

    Full text link
    The general theory of neutron scattering is presented, valid for the whole domain of slow neutrons from thermal to ultracold. Particular attention is given to multiple scattering which is the dominant process for ultracold neutrons (UCN). For thermal and cold neutrons, when the multiple scattering in the target can be neglected, the cross section is reduced to the known value. A new expression for inelastic scattering cross section for UCN is proposed. Dynamical processes in the target are taken into account and their influence on inelastic scattering of UCN is analyzed.Comment: 28 pages, latex, 2 Postscript figures, submitted to the European Physical Journal

    The action for the (propagating) torsion and the limits on the torsion parameters from present experimental data

    Get PDF
    Starting from the well established form of the Dirac action coupled to the electromagnetic and torsion field we find that there is some additional softly broken local symmetry associated with torsion. This symmetry fixes the form of divergences of the effective action after the spinor fields are integrated out. Then the requirement of renormalizability fixes the torsion field to be equivalent to some massive pseudovector and its action is fixed with accuracy to the values of coupling constant of torsion-spinor interaction, mass of the torsion and higher derivative terms. Implementing this action into the abelian sector of the Standard Model we establish the upper bounds on the torsion mass and coupling. In our study we used results of present experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and TEVATRON limits on the cross section of new gauge boson, which could be produced as a resonance at high energy ppˉp\bar{p} collisions.Comment: 12 pages, LaTeX, 5 figures include

    Analysis of the vertices ρNN\rho NN, ρΣΣ\rho\Sigma\Sigma and ρΞΞ\rho\Xi\Xi with light-cone QCD sum rules

    Full text link
    In this article, we calculate the strong coupling constants of the ρNN\rho NN, ρΣΣ\rho\Sigma\Sigma and ρΞΞ\rho\Xi\Xi in the framework of the light-cone QCD sum rules approach. The strong coupling constants of the meson-baryon-baryon are the fundamental parameters in the one-boson exchange model which describes the baryon-baryon interactions successfully. The numerical values are in agreement with the existing calculations in part. The electric and magnetic F/(F+D)F/(F+D) ratios deviate from the prediction of the vector meson dominance theory, the SU(3) symmetry breaking effects are very large.Comment: 19 pages, 6 figures, revised version, add more discussions(Correct writing errors

    Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei

    Full text link
    We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.Comment: 5 pages, 4 figures, Proceedings of the Japanese French Symposium - New paradigms in Nuclear Physics, Paris, 29th September - 2nd October, to be published in Int. J. of Modern Physics

    Light-cone sum rules for the NγΔN\gamma\Delta transitions for real photons

    Full text link
    We examine the radiative ΔγN\Delta \to \gamma N transition at the real photon point Q2=0Q^2=0 using the framework of light-cone QCD sum rules. In particular, the sum rules for the transition form factors GM(0)G_M(0) and REMR_{EM} are determined up to twist 4. The result for GM(0)G_M(0) agrees with experiment within 10% accuracy. The agreement for REMR_{EM} is also reasonable. In addition, we derive new light-cone sum rules for the magnetic moments of nucleons, with a complete account of twist-4 corrections based on a recent reanalysis of photon distribution amplitudes.Comment: 34 pages, 9 figures, revised version, published in Phys. Rev. D, one misplaced reference correcte

    WHW_H-pair Production in the Littlest Higgs Model with T parity in next-to-leading order QCD at LHC

    Full text link
    In the framework of the littlest Higgs model with TT parity, we study the WHW_H-pair production at the CERN Large Hadron Collider up to the QCD next-to-leading order (NLO). The kinematic distributions of final decay products and the theoretical dependence of the cross section on the factorization/renormalization scale are analyzed. We adopt the PROSPINO scheme in the QCD NLO calculations to avoid double counting and keep the convergence of the perturbative QCD description. Our numerical results show that the QCD NLO corrections significantly reduce the scale uncertainty, and enhance the leading order integrated cross section with a KK-factor in the range of 1.101.221.10-1.22 (1.091.171.09-1.17) with the symmetry breaking scale ff varying from 400GeV400 GeV (400GeV400 GeV) to 1.5TeV1.5 TeV (1.0TeV1.0 TeV) at the 14TeV14 TeV (8TeV)(8 TeV) LHC. We find that it is possible to select the signal events of the WHW_H-pair production from the ppW+We+μνeνˉμ+Xpp\to W^+ W^- \to e^+ \mu^-\nu_{e}\bar{\nu}_{\mu}+X background with high ratio of signature over background by taking proper lower limits on transverse momenta, invariant mass of the final charged leptons and the missing transverse momentum.Comment: 34 pages, 14 figures, 4 table

    Pairing properties of superheavy nuclei

    Get PDF
    Pairing properties of even-even superheavy N=184 isotones are studied within the Skyrme-Hartree-Fock+BCS approach. In the particle-hole channel we take the Skyrme energy density functional SLy4, while in the particle-particle channel we employ the seniority pairing force and zero-range delta-interactions with different forms of density dependence. We conclude that the calculated static fission trajectories weakly depend on the specific form of the delta-pairing interaction. We also investigate the impact of triaxiality on the inner fission barrier and find a rather strong Z dependence of the effect.Comment: 9 pages, 5 figures, submitted to International Journal of Modern Physics
    corecore