14,833 research outputs found

    Positive and negative-parity flavor-octet baryons in coupled QCD sum rules

    Get PDF
    We apply the method of the QCD sum rule, in which positive- and negative-parity baryons couple with each other, to the flavor-octet hyperons and investigate the parity splittings. We also reexamine the nucleon in the method, which was studied in our previous paper, by carefully choosing the Borel weight. Both in the nucleon and hyperon channels the obtained sum rules turn out to have a very good Borel stability and also have a Borel window, an energy region in which the OPE converges and the pole contribution dominates over the continuum contribution. The predicted masses of the positive- and negative-parity baryons reproduce the experimental ones fairly well in the Λ\Lambda and Σ\Sigma channels, if we assign the Λ(1670)\Lambda(1670) and the Σ(1620)\Sigma(1620) to the parity partners of the Λ\Lambda and the Σ\Sigma, respectively. This implies that the Λ(1405)\Lambda(1405) is not the party partner of the Λ\Lambda and may be a flavor-singlet or exotic state. In the Ξ\Xi channel, the sum rule predicts the mass of the negative-parity state to be about 1.8 GeV, which leads to two possibilities; one is that the observed state with the closest mass, Ξ(1690)\Xi(1690), is the parity partner and the other is that the parity partner is not yet found but exists around 1.8 GeV.Comment: 15 pages, 4 figure

    Calculation of the pentaquark width by QCD sum rule

    Get PDF
    The pentaquark width is calculated in QCD sum rules. Result for ΓΘ\Gamma_{\Theta} show, that ΓΘ\Gamma_{\Theta} can vary in the region less than 1MeVMeV. The main conclusion is, that if pentaquark is genuine states then sum rules really predict the narrow width of pentaquark θ+\theta^+, and the suppression of the width is both parametrical and numerical.Comment: 8 Ppages, 3 figures,the numerical error was corrected, two figures are modified. In the limit of errors the result did not change significantl

    Quark distributions in QCD sum rules: unexpected features and paradoxes

    Full text link
    Some very unusual features of the hadron structure functions, obtained in the generalized QCD sum rules, like the surprisingly strong difference between longitudinally and transversally polarized ρ\rho mesons structure functions and the strong suppression of the gluon sea in longitudinally polarized ρ\rho mesons are discussed. Also the problem of exact zero contribution of gluon condensates to pion and longitudinally polarized ρ\rho meson quark distributions is discussed.Comment: 9 pages, 5 fig

    Tree Level Unitarity Bounds for the Minimal B-L Model

    Full text link
    We have derived the unitarity bounds in the high energy limit for the minimal B-L extension of the Standard Model by analysing the full class of Higgs and would-be Goldstone boson two-to-two scatterings at tree level. Moreover, we have investigated how these limits could vary at some lower critical value of the energy.Comment: 20 pages, 4 figures, 2 tables; 1d figure modified, typos corrected, bibliography augmented; published in PRD after minor adjustmen

    The Z' boson of the minimal B-L model at future Linear Colliders in e+e- --> mu+mu-

    Get PDF
    We study the capabilities of future electron-positron Linear Colliders, with centre-of-mass energy at the TeV scale, in accessing the parameter space of a ZZ' boson within the minimal BLB-L model. We carry out a detailed comparison between the discovery regions mapped over a two-dimensional configuration space (ZZ' mass and coupling) at the Large Hadron Collider and possible future Linear Colliders for the case of di-muon production. As known in the literature for other ZZ' models, we confirm that leptonic machines, as compared to the CERN hadronic accelerator, display an additional potential in discovering a ZZ' boson as well as in allowing one to study its properties at a level of precision well beyond that of any of the existing colliders.Comment: 5 pages, proceeding of LC09 (Perugia), published by the Italian Physical Society in the Nuovo Cimento C (Colloquia

    Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

    Full text link
    A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated, that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated as well as the masses of hyperons and some baryonic resonances and expressed mainly through the values of quark condensates -- , q=u,d,s, ~q=u,d,s -- the vacuum expectation values (v.e.v.) of quark field. The concept of vacuum expectation values induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron and hyperons are calculated. The results of calculation of baryon octet β\beta-decay constants are also presented.Comment: 13 pades, 5 figures. Dedicated to 85-birthday of acad. S.T.Belyaev. To be published in Phys.At.Nucl. Few references are correcte

    Generalized Density Matrix Revisited: Microscopic Approach to Collective Dynamics in Soft Spherical Nuclei

    Full text link
    The generalized density matrix (GDM) method is used to calculate microscopically the parameters of the collective Hamiltonian. Higher order anharmonicities are obtained consistently with the lowest order results, the mean field [Hartree-Fock-Bogoliubov (HFB) equation] and the harmonic potential [quasiparticle random phase approximation (QRPA)]. The method is applied to soft spherical nuclei, where the anharmonicities are essential for restoring the stability of the system, as the harmonic potential becomes small or negative. The approach is tested in three models of increasing complexity: the Lipkin model, model with factorizable forces, and the quadrupole plus pairing model.Comment: submitted to Physical Review C on 08 May, 201

    Vector, Axial, Tensor and Pseudoscalar Vacuum Susceptibilities

    Get PDF
    Using a recently developed three-point formalism within the method of QCD Sum Rules we determine the vacuum susceptibilities needed in the two-point formalism for the coupling of axial, vector, tensor and pseudoscalar currents to hadrons. All susceptibilities are determined by the space-time scale of condensates, which is estimated from data for deep inelastic scattering on nucleons

    Quenching of pairing gap at finite temperature in 184W

    Full text link
    We extract pairing gap in 184^{184}W at finite temperature for the first time from the experimental level densities of 183^{183}W, 184^{184}W, and 185^{185}W using "thermal" odd-even mass difference. We found the quenching of pairing gap near the critical temperature Tc=0.47T_c = 0.47 MeV in the BCS calculations. It is shown that the monopole pairing model with a deformed Woods-Saxon potential explains the reduction of the pairing correlation using the partition function with the number parity projection in the static path approximation plus random-phase approximation.Comment: 5 pages, 4 figures, accepted for publication in PR
    corecore