14 research outputs found

    Acoel and platyhelminth models for stem-cell research

    Get PDF
    Acoel and platyhelminth worms are particularly attractive invertebrate models for stem-cell research because their bodies are continually renewed from large pools of somatic stem cells. Several recent studies, including one in BMC Developmental Biology, are beginning to reveal the cellular dynamics and molecular basis of stem-cell function in these animals

    Stochastic WNT signaling between nonequivalent cells regulates adhesion but not fate in the two-cell leech embryo

    Get PDF
    AbstractBackground: In the leech Helobdella robusta, an annelid worm, the early pattern of cell divisions is stereotyped. The unequal first cleavage yields cells AB and CD, which differ in size, cytoplasmic inheritance, normal fate, and developmental potential.Results: Here we report a dynamic and transcription-independent pattern of WNT signaling in the two-cell stage of H. robusta. Surprisingly, HRO-WNT-A is first expressed in a stochastic manner, such that either AB or CD secretes the protein in each embryo. This stochastic phase is followed by a deterministic phase during which first AB, then CD expresses HRO-WNT-A. When contact between the cells is reduced or eliminated, both AB and CD express HRO-WNT-A simultaneously. Finally, bathing embryos in anti-HRO-WNT-A antibody during first cleavage reduces the adhesion between cells AB and CD.Conclusions: Our findings show that the stochastic phase of HRO-WNT-A signaling in the two-cell stage of Helobdella is negatively regulated by cell-cell contact and that this early signaling affects cell adhesion without affecting cell fate. We speculate that the primordial function of wnt class genes may have been to regulate cell-cell adhesion and that the nuclear signaling components of the wnt pathway arose later in association with the evolution of diverse cell types

    Fine taxonomic sampling of nervous systems within Naididae (Annelida: Clitellata) reveals evolutionary lability and revised homologies of annelid neural components

    Get PDF
    Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.Introduction: An important goal for understanding how animals have evolved is to reconstruct the ancestral features and evolution of the nervous system. Many inferences about nervous system evolution are weak because of sparse taxonomic sampling and deep phylogenetic distances among species compared. Increasing sampling within clades can strengthen inferences by revealing which features are conserved and which are variable within them. Among the Annelida, the segmented worms, the Clitellata are typically considered as having a largely conserved neural architecture, though this view is based on limited sampling. Results: To gain better understanding of nervous system evolution within Clitellata, we used immunohistochemistry and confocal laser scanning microscopy to describe the nervous system architecture of 12 species of the basally branching family Naididae. Although we found considerable similarity in the nervous system architecture of naidids and that of other clitellate groups, our study identified a number of features that are variable within this family, including some that are variable even among relatively closely related species. Variable features include the position of the brain, the number of ciliary sense organs, the presence of septate ventral nerve cord ganglia, the distribution of serotonergic cells in the brain and ventral ganglia, and the number of peripheral segmental nerves. Conclusions: Our analysis of patterns of serotonin immunoreactive perikarya in the central nervous system indicates that segmental units are not structurally homogeneous, and preliminary homology assessments suggest that whole sets of serotonin immunoreactive cells have been gained and lost across the Clitellata. We also found that the relative position of neuroectodermal and mesodermal segmental components is surprisingly evolutionarily labile; in turn, this revealed that scoring segmental nerves by their position relative to segmental ganglia rather than to segmental septa clarifies their homologies across Annelida. We conclude that fine taxonomic sampling in comparative studies aimed at elucidating the evolution of morphological diversity is fundamental for proper assessment of trait variability.https://doi.org/10.1186/s12983-015-0100-

    Plasticity and regeneration of gonads in the annelid Pristina leidyi

    Get PDF
    International audienceGonads are specialized gamete-producing structures that, despite their functional importance, are generated by diverse mechanisms across groups of animals and can be among the most plastic organs of the body. Annelids, the segmented worms, are a group in which gonads have been documented to be plastic and to be able to regenerate, but little is known about what factors influence gonad development or how these structures regenerate. In this study, we aimed to identify factors that influence the presence and size of gonads and to investigate gonad regeneration in the small asexually reproducing annelid, Pristina leidyi.We found that gonad presence and size in asexual adult P. leidyi are highly variable across individuals and identified several factors that influence these structures. An extrinsic factor, food availability, and two intrinsic factors, individual age and parental age, strongly influence the presence and size of gonads in P. leidyi. We also found that following head amputation in this species, gonads can develop by morphallactic regeneration in previously non-gonadal segments. We also identified a sexually mature individual from our laboratory culture that demonstrates that, although our laboratory strain reproduces only asexually, it retains the potential to become fully sexual.Our findings demonstrate that gonads in P. leidyi display high phenotypic plasticity and flexibility with respect to their presence, their size, and the segments in which they can form. Considering our findings along with relevant data from other species, we find that, as a group, clitellate annelids can form gonads in at least four different contexts: post-starvation refeeding, fission, morphallactic regeneration, and epimorphic regeneration. This group is thus particularly useful for investigating the mechanisms involved in gonad formation and the evolution of post-embryonic phenotypic plasticity

    Long-term time-lapse live imaging reveals extensive cell migration during annelid regeneration

    Get PDF
    Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.Background: Time-lapse imaging has proven highly valuable for studying development, yielding data of much finer resolution than traditional “still-shot” studies and allowing direct examination of tissue and cell dynamics. A major challenge for time-lapse imaging of animals is keeping specimens immobile yet healthy for extended periods of time. Although this is often feasible for embryos, the difficulty of immobilizing typically motile juvenile and adult stages remains a persistent obstacle to time-lapse imaging of post-embryonic development. Results: Here we describe a new method for long-duration time-lapse imaging of adults of the small freshwater annelid Pristina leidyi and use this method to investigate its regenerative processes. Specimens are immobilized with tetrodotoxin, resulting in irreversible paralysis yet apparently normal regeneration, and mounted in agarose surrounded by culture water or halocarbon oil, to prevent dehydration but allowing gas exchange. Using this method, worms can be imaged continuously and at high spatial-temporal resolution for up to 5 days, spanning the entire regeneration process. We performed a fine-scale analysis of regeneration growth rate and characterized cell migration dynamics during early regeneration. Our studies reveal the migration of several putative cell types, including one strongly resembling published descriptions of annelid neoblasts, a cell type suggested to be migratory based on “still-shot” studies and long hypothesized to be linked to regenerative success in annelids. Conclusions: Combining neurotoxin-based paralysis, live mounting techniques and a starvation-tolerant study system has allowed us to obtain the most extensive high-resolution longitudinal recordings of full anterior and posterior regeneration in an invertebrate, and to detect and characterize several cell types undergoing extensive migration during this process. We expect the tetrodotoxin paralysis and time-lapse imaging methods presented here to be broadly useful in studying other animals and of particular value for studying post-embryonic development.https://doi.org/10.1186/s12861-016-0104-

    Transcriptome characterization via 454 pyrosequencing of the annelid Pristina leidyi, an emerging model for studying the evolution of regeneration

    Get PDF
    Background: The naid annelids contain a number of species that vary in their ability to regenerate lost body parts, making them excellent candidates for evolution of regeneration studies. However, scant sequence data exists to facilitate such studies. We constructed a cDNA library from the naid Pristina leidyi, a species that is highly regenerative and also reproduces asexually by fission, using material from a range of regeneration and fission stages for our library. We then sequenced the transcriptome of P. leidyi using 454 technology. Results: 454 sequencing produced 1,550,174 reads with an average read length of 376 nucleotides. Assembly of 454 sequence reads resulted in 64,522 isogroups and 46,679 singletons for a total of 111,201 unigenes in this transcriptome. We estimate that over 95% of the transcripts in our library are present in our transcriptome. 17.7% of isogroups had significant BLAST hits to the UniProt database and these include putative homologs of a number of genes relevant to regeneration research. Although many sequences are incomplete, the mean sequence length of transcripts (isotigs) is 707 nucleotides. Thus, many sequences are large enough to be immediately useful for downstream applications such as gene expression analyses. Using in situ hybridization, we show that two Wnt/β-catenin pathway genes (homologs of frizzled and β-catenin) present in our transcriptome are expressed in the regeneration blastema of P. leidyi, demonstrating the usefulness of this resource for regeneration research. Conclusions: 454 sequencing is a rapid and efficient approach for identifying large numbers of genes in an organism that lacks a sequenced genome. This transcriptome dataset will be a valuable resource for molecular analyses of regeneration in P. leidyi and will serve as a starting point for comparisons to non-regenerating naids. It also contributes significantly to the still limited genomic resources available for annelids and lophotrochozoans more generally.https://doi.org/10.1186/1471-2164-13-28

    Integrative biology of injury in animals

    No full text
    Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of ‘injury biology’.https://doi.org/10.1111/brv.1289
    corecore