112 research outputs found

    Hydrothermal synthesis of zeolites from coal fly ash

    Get PDF
    The fly ash, from the combustion of coal to produce energy and heat, is an industrial waste, in which large accumulations represent a serious environmental threat. To reduce the environmental burden and improve the economic benefits of energy production, the science and industry focus on the transformation of coal combustion byproducts into new functional materials. The fly ash was studied by modern analytical methods. As a result of the hydrothermal reaction, several types of zeolites were synthesised from the fly ash: analcime, faujasite (zeolite X) and gismondine (zeolite P). It was shown that the experimental conditions (temperature, reaction time and alkali concentration) have a significant influence on the type of zeolite and its content in the reaction products. The series of experiments resulted in building approximate crystallisation field of zeolites and other phases as the first stage of the formation of ceramic membrane and other materials

    Tendinopathy: Pathophysiology, therapeutic options, and role of nutraceutics. a narrative literature review

    Get PDF
    Tendinopathies are very common in general population and a huge number of tendon-related procedures take place annually worldwide, with significant socio-economic repercussions. Numerous treatment options are commonly used for tendon disorders. Besides pharmacological and physical therapy, nutrition could represent an additional tool for preventing and treating this complex pathology that deserve a multidisciplinary approach. In recent years, nutraceutical products are growing up in popularity since these seem to favor the prevention and the healing processes of tendon injuries. This narrative literature review aims to summarize current understanding and the areas of ongoing research about the management of tendinopathies with the help of oral supplementation

    Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming

    Get PDF
    Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell-like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real-time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration-free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming

    Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape

    Get PDF
    Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alter-ations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma‐associated fibroblasts (MAFs) that are highly abun-dant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal mi-croenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we dis-cuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progres-sion, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes

    The Long and Winding Road to Cardiac Regeneration

    Get PDF
    Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases

    Effect of Video Observation and Motor Imagery on Simple Reaction Time in Cadet Pilots

    Get PDF
    Neuromotor training can improve motor performance in athletes and patients. However, few data are available about their effect on reaction time (RT). We investigated the influence of video observation/motor imagery (VO/MI) on simple RT to visual and auditory stimuli. The experimental group comprised 21 cadets who performed VO/MI training over 4 weeks. Nineteen cadets completed a sham intervention as control. The main outcome measure was RT to auditory and visual stimuli for the upper and lower limbs. The RT to auditory stimuli improved significantly post-intervention in both groups (control vs. experimental mean change for upper limbs: −40 ms vs. −40 ms, p = 0.0008; for lower limbs: −50 ms vs. −30 ms, p = 0.0174). A trend towards reduced RT to visual stimuli was observed (for upper limbs: −30 ms vs. −20 ms, p = 0.0876; for lower limbs: −30 ms vs. −20 ms, p = 0.0675). The interaction term was not significant. Only the specific VO/MI training produced a linear correlation between the improvement in the RT to auditory and visual stimuli for the upper (r = 0.703) and lower limbs (r = 0.473). In conclusion, VO/MI training does not improve RT when compared to control, but it may be useful in individuals who need to simultaneously develop a fast response to different types of stimuli

    Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs

    Get PDF
    Physical stimuli are crucial for the structural and functional maturation of tissues both in vivo and in vitro. In tissue engineering applications, bioreactors have become fundamental and effective tools for providing biomimetic culture conditions that recapitulate the native physical stimuli. In addition, bioreactors play a key role in assuring strict control, automation, and standardization in the production process of cell-based products for future clinical application. In this study, a compact, easy-to-use, tunable stretch bioreactor is proposed. Based on customizable and low-cost technological solutions, the bioreactor was designed for providing tunable mechanical stretch for biomimetic dynamic culture of different engineered tissues. In-house validation tests demonstrated the accuracy and repeatability of the imposed mechanical stimulation. Proof of concepts biological tests performed on engineered cardiac constructs, based on decellularized human skin scaffolds seeded with human cardiac progenitor cells, confirmed the bioreactor Good Laboratory Practice compliance and ease of use, and the effectiveness of the delivered cyclic stretch stimulation on the cardiac construct maturation

    Spatial and temporal variability of the dimethylsulfide to chlorophyll ratio in the surface ocean: an assessment based on phytoplankton group dominance determined from space

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is produced in surface seawater by phytoplankton. Phytoplankton culture experiments have shown that nanoeucaryotes (NANO) display much higher mean DMSP-to-Carbon or DMSP-to-Chlorophyll (Chl) ratios than Prochlorococcus (PRO), Synechococcus (SYN) or diatoms (DIAT). Moreover, the DMSP-lyase activity of algae which cleaves DMSP into dimethylsulfide (DMS) is even more group specific than DMSP itself. Ship-based observations have shown at limited spatial scales, that sea surface DMS-to-Chl ratios (DMS:Chl) are dependent on the composition of phytoplankton groups. Here we use satellite remote sensing of Chl (from SeaWiFS) and of Phytoplankton Group Dominance (PGD from PHYSAT) with ship-based sea surface DMS concentrations (8 cruises in total) to assess this dependence on an unprecedented spatial scale. PHYSAT provides PGD (either NANO, PRO, SYN, DIAT, Phaeocystis (PHAEO) or coccolithophores (COC)) in each satellite pixel (1/4° horizontal resolution). While there are identification errors in the PHYSAT method, it is important to note that these errors are lowest for NANO PGD which we typify by high DMSP:Chl. In summer, in the Indian sector of the Southern Ocean, we find that mean DMS:Chl associated with NANO + PHAEO and PRO + SYN + DIAT are 13.6±8.4 mmol g−1 (n=34) and 7.3±4.8 mmol g−1 (n=24), respectively. That is a statistically significant difference (P<0.001) that is consistent with NANO and PHAEO being relatively high DMSP producers. However, in the western North Atlantic between 40° N and 60° N, we find no significant difference between the same PGD. This is most likely because coccolithophores account for the non-dominant part of the summer phytoplankton assemblages. Meridional distributions at 22° W in the Atlantic, and 95° W and 110° W in the Pacific, both show a marked drop in DMS:Chl near the equator, down to few mmol g−1, yet the basins exhibit different PGD (NANO in the Atlantic, PRO and SYN in the Pacific). In tropical and subtropical Atlantic and Pacific waters away from the equatorial and coastal upwelling, mean DMS:Chl associated with high and low DMSP producers are statistically significantly different, but the difference is opposite of that expected from culture experiments. Hence, in a majority of cases PGD is not of primary importance in controlling DMS:Chl variations. We therefore conclude that water-leaving radiance spectra obtained simultaneously from ocean color sensor measurements of Chl concentrations and dominant phytoplankton groups can not be used to predict global fields of DMS

    A low-cost scalable 3D-printed sample-holder for agitation-based decellularization of biological tissues

    Get PDF
    Decellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed. In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the specimens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility
    corecore