3 research outputs found

    Two-loop approximation in the Coulomb blockade problem

    Full text link
    We study Coulomb blockade (CB) oscillations in the thermodynamics of a metallic grain which is connected to a lead by a tunneling contact with a large conductance g0g_0 in a wide temperature range, ECg04e−g0/2<T<ECE_Cg_0^4 e^{-g_0/2}<T<E_C, where ECE_C is the charging energy. Using the instanton analysis and the renormalization group we obtain the temperature dependence of the amplitude of CB oscillations which differs from the previously obtained results. Assuming that at T<ECg04e−g0/2T < E_Cg_0^4 e^{-g_0/2} the oscillation amplitude weakly depends on temperature we estimate the magnitude of CB oscillations in the ground state energy as ECg04e−g0/2E_Cg_0^4 e^{-g_0/2}.Comment: 10 pages, 3 figure

    Integrable Circular Brane Model and Coulomb Charging at Large Conduction

    Full text link
    We study a model of 2D QFT with boundary interaction, in which two-component massless Bose field is constrained to a circle at the boundary. We argue that this model is integrable at two values of the topological angle, θ=0\theta =0 and θ=π\theta=\pi. For θ=0\theta=0 we propose exact partition function in terms of solutions of ordinary linear differential equation. The circular brane model is equivalent to the model of quantum Brownian dynamics commonly used in describing the Coulomb charging in quantum dots, in the limit of small dimensionless resistance g0g_0 of the tunneling contact. Our proposal translates to partition function of this model at integer charge.Comment: 20 pages, minor change

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure
    corecore