910 research outputs found
Cut-free Calculi and Relational Semantics for Temporal STIT Logics
We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames
Effect of Build Angle and Model Body Type (Solid vs Shell) on Accuracy of 3D-Printed Orthodontic Models Using a DLP Printer
Title from PDF of title page, viewed December 22, 2022Thesis advisors: Stefan Lohfeld and Mary P. WalkerVitaIncludes bibliographical references (pages 42-43)Thesis (M.S.)--Department of Oral and Craniofacial Sciences, University of Missouri--Kansas City, 2022This study examined the effect that print angulation and model body type (solid vs. shell) have on the accuracy of orthodontic models printed with a digital light processing (DLP) 3D printer. The following six configuration of models were printed: 0° Solid, 0° Shell, 70° solid, 70° shell, 90° solid, and 90° shell. Eleven selected structures and distances were measured and compared against a digital master model.
Based on the comparisons made between the experimental models and digital master model, print angulation and model body type had little to no clinically relevant impact on the accuracy of the orthodontic models, with 98% of the raw measurements falling within the range of clinical acceptability, which was set at ±0.25 mm for single tooth measurements (intra-tooth) and ±0.5 mm for cross arch measurements (inter-tooth).
The overall results of this study suggest that altering print angulation and model body type according to the parameters set in this study, does not impact the clinical accuracy of 3D printed orthodontic models. These findings suggest greater flexibility of the practitioner to alter print settings to meet the needs of various clinical scenarios.Introduction -- Materials and methods -- Results -- Discussion -- Conclusio
The open future, bivalence and assertion
It is highly intuitive that the future is open and the past is closed—whereas it is unsettled whether there will be a fourth world war, it is settled that there was a first. Recently, it has become increasingly popular to claim that the intuitive openness of the future implies that contingent statements about the future, such as ‘there will be a sea battle tomorrow,’ are non-bivalent (neither true nor false). In this paper, we argue that the non-bivalence of future contingents is at odds with our pre-theoretic intuitions about the openness of the future. These are revealed by our pragmatic judgments concerning the correctness and incorrectness of assertions of future contingents. We argue that the pragmatic data together with a plausible account of assertion shows that in many cases we take future contingents to be true (or to be false), though we take the future to be open in relevant respects. It follows that appeals to intuition to support the non-bivalence of future contingents is untenable. Intuition favours bivalence
The Invisible Thin Red Line
The aim of this paper is to argue that the adoption of an unrestricted principle of bivalence is compatible with a metaphysics that (i) denies that the future is real, (ii) adopts nomological indeterminism, and (iii) exploits a branching structure to provide a semantics for future contingent claims. To this end, we elaborate what we call Flow Fragmentalism, a view inspired by Kit Fine (2005)’s non-standard tense realism, according to which reality is divided up into maximally coherent collections of tensed facts. In this way, we show how to reconcile a genuinely A-theoretic branching-time model with the idea that there is a branch corresponding to the thin red line, that is, the branch that will turn out to be the actual future history of the world
Is Quantum Mechanics Compatible with an Entirely Deterministic Universe?
A b s t r a c t It will be argued that 1) the Bell inequalities are not
equivalent with those inequalities derived by Pitowsky and others that indicate
the Kolmogorovity of a probability model, 2) the original Bell inequalities are
irrelevant to both the question of whether or not quantum mechanics is a
Kolmogorovian theory as well as the problem of determinism, whereas 3) the
Pitowsky type inequalities are not violated by quantum mechanics, hence 4)
quantum mechanics is a Kolmogorovian probability theory, therefore, 5) it is
compatible with an entirely deterministic universe.Comment: 15 pages, (compressed and uuencoded) Postscript (188 kb), preprint
94/0
Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics
This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we show that the refined calculi Ldm^m_nL derive theorems within a restricted class of (forestlike) sequents, allowing us to provide proof-search algorithms that decide single-agent STIT logics. We prove that the proof-search algorithms are correct and terminate
Using Remote Sensing and Detection of Early Season Invasives (DESI) to Analyze the Temporal Dynamics of Invasive Cheatgrass (Bromus tectorum)
The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions
A Paraconsistent Higher Order Logic
Classical logic predicts that everything (thus nothing useful at all) follows
from inconsistency. A paraconsistent logic is a logic where an inconsistency
does not lead to such an explosion, and since in practice consistency is
difficult to achieve there are many potential applications of paraconsistent
logics in knowledge-based systems, logical semantics of natural language, etc.
Higher order logics have the advantages of being expressive and with several
automated theorem provers available. Also the type system can be helpful. We
present a concise description of a paraconsistent higher order logic with
countable infinite indeterminacy, where each basic formula can get its own
indeterminate truth value (or as we prefer: truth code). The meaning of the
logical operators is new and rather different from traditional many-valued
logics as well as from logics based on bilattices. The adequacy of the logic is
examined by a case study in the domain of medicine. Thus we try to build a
bridge between the HOL and MVL communities. A sequent calculus is proposed
based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker,
Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte
- …