5 research outputs found

    Intraperitoneal but Not Intravenous Cryopreserved Mesenchymal Stromal Cells Home to the Inflamed Colon and Ameliorate Experimental Colitis

    Get PDF
    BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1β decreased, while VEGF and TGF-β did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis

    Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics

    Get PDF
    In a multicellular organism, the extracellular matrix (ECM) provides a cell-supporting scaffold and helps maintaining the biophysical integrity of tissues and organs. At the same time it plays crucial roles in cellular communication and signalling, with implications in spatial organisation, motility and differentiation. Similarly, the presence of an ECM-like extracellular polymeric substance is known to support and protect bacterial and fungal multicellular aggregates, such as biofilms or colonies. However, the roles and composition of this microbial ECM are still poorly understood.Authors would like to acknowledge Joana Tulha for assistance on yeasts overlay photographs, and to Rui Armada for C. albicans ECM SDS-PAGE experiment. The proteomic analysis was carried out at the proteomics facility UCM-PCM, a member of the ProteoRed network. The polysaccharide analysis was performed at the Laboratory of Glycoconjugates Biochemistry and Cellular Biology, UFRJ, Brazil. Fabio Faria-Oliveira was supported by a PhD scholarship SFRH/BD/45368/2008 from FCT (Fundacao para a Ciencia e a Tecnologia). This work was funded by Marie Curie Initial Training Network GLYCOPHARM (PITN-GA-2012-317297), and by FCT/MEC through Portuguese funds (PIDDAC) - PEst-OE/BIA/UI4050/2014. The authors would also like to acknowledge Hugh S. Johnson for critical reading of the manuscript regarding English usage
    corecore