19 research outputs found

    Protection of hybrid immunity against SARS-CoV-2 reinfection and severe COVID-19 during periods of Omicron variant predominance in Mexico

    Get PDF
    BackgroundWith the widespread transmission of the Omicron SARS-CoV-2 variant, reinfections have become increasingly common. Here, we explored the role of immunity, primary infection severity, and variant predominance in the risk of reinfection and severe COVID-19 during Omicron predominance in Mexico.MethodsWe analyzed reinfections in Mexico in individuals with a primary infection separated by at least 90 days from reinfection using a national surveillance registry of SARS-CoV-2 cases from March 3rd, 2020, to August 13th, 2022. Immunity-generating events included primary infection, partial or complete vaccination, and booster vaccines. Reinfections were matched by age and sex with controls with primary SARS-CoV-2 infection and negative RT-PCR or antigen test at least 90 days after primary infection to explore reinfection and severe disease risk factors. We also compared the protective efficacy of heterologous and homologous vaccine boosters against reinfection.ResultsWe detected 231,202 SARS-CoV-2 reinfections in Mexico, most occurring in unvaccinated individuals (41.55%). Over 207,623 reinfections occurred during periods of Omicron (89.8%), BA.1 (36.74%), and BA.5 (33.67%) subvariant predominance and a case-fatality rate of 0.22%. Vaccination protected against reinfection, without significant influence of the order of immunity-generating events and provided >90% protection against severe reinfections. Heterologous booster schedules were associated with ~11% and ~ 54% lower risk for reinfection and reinfection-associated severe COVID-19, respectively, modified by time-elapsed since the last immunity-generating event, when compared against complete primary schedules.ConclusionSARS-CoV-2 reinfections increased during Omicron predominance. Hybrid immunity provides protection against reinfection and associated severe COVID-19, with potential benefit from heterologous booster schedules

    Spatial analysis of COVID-19 spread in Iran: Insights into geographical and structural transmission determinants at a province level.

    No full text
    The Islamic Republic of Iran reported its first COVID-19 cases by 19th February 2020, since then it has become one of the most affected countries, with more than 73,000 cases and 4,585 deaths to this date. Spatial modeling could be used to approach an understanding of structural and sociodemographic factors that have impacted COVID-19 spread at a province-level in Iran. Therefore, in the present paper, we developed a spatial statistical approach to describe how COVID-19 cases are spatially distributed and to identify significant spatial clusters of cases and how socioeconomic and climatic features of Iranian provinces might predict the number of cases. The analyses are applied to cumulative cases of the disease from February 19th to March 18th. They correspond to obtaining maps associated with quartiles for rates of COVID-19 cases smoothed through a Bayesian technique and relative risks, the calculation of global (Moran's I) and local indicators of spatial autocorrelation (LISA), both univariate and bivariate, to derive significant clustering, and the fit of a multivariate spatial lag model considering a set of variables potentially affecting the presence of the disease. We identified a cluster of provinces with significantly higher rates of COVID-19 cases around Tehran (p-value< 0.05), indicating that the COVID-19 spread within Iran was spatially correlated. Urbanized, highly connected provinces with older population structures and higher average temperatures were the most susceptible to present a higher number of COVID-19 cases (p-value < 0.05). Interestingly, literacy is a factor that is associated with a decrease in the number of cases (p-value < 0.05), which might be directly related to health literacy and compliance with public health measures. These features indicate that social distancing, protecting older adults, and vulnerable populations, as well as promoting health literacy, might be useful to reduce SARS-CoV-2 spread in Iran. One limitation of our analysis is that the most updated information we found concerning socioeconomic and climatic features is not for 2020, or even for a same year, so that the obtained associations should be interpreted with caution. Our approach could be applied to model COVID-19 outbreaks in other countries with similar characteristics or in case of an upturn in COVID-19 within Iran

    Institutional care in four Latin American countries: the importance of fostering public information and evaluation strategies

    No full text
    More than 8 million older people in Latin America depend on long-term care (LTC), accounting for 12% of people aged ≥ 60 years and almost 27% of those aged ≥ 80. It is crucial to develop sustainable strategies for providing LTC in the area, including institutional care. This special report aims to characterize institutional LTC in four countries (Brazil, Chile, Costa Rica and Mexico), using available information systems, and to identify the strategies adopted to support institutional care in these countries. This narrative review used nationwide, open-access, public data sources to gather demographic estimates and information about institutional LTC coverage and the availability of open-access data for the proportion of people with LTC needs, the number of LTC facilities and the number of residents living in them. These countries have a larger share of older people than the average in Latin America but fewer LTC facilities than required by the demand. National surveys lack standardization in defining disability, LTC and dependency on care. Information about institutional care is mainly fragmented and does not regularly include LTC facilities, their residents and workers. Data are crucial to inform evidence-based decisions to favor prioritization and to support advances in promoting policies around institutional LTC in Latin America. Although information about institutional care in the region is fragmented and insufficient, this paper profiles the four selected countries. It highlights the need for a better structure for datadriven LTC information systems. The lack of information emphasizes the urgency of the need to focus on and encourage research into this topic

    Validation and repurposing of the MSL-COVID-19 score for prediction of severe COVID-19 using simple clinical predictors in a triage setting: The Nutri-CoV score.

    No full text
    BackgroundDuring the COVID-19 pandemic, risk stratification has been used to decide patient eligibility for inpatient, critical and domiciliary care. Here, we sought to validate the MSL-COVID-19 score, originally developed to predict COVID-19 mortality in Mexicans. Also, an adaptation of the formula is proposed for the prediction of COVID-19 severity in a triage setting (Nutri-CoV).MethodsWe included patients evaluated from March 16th to August 17th, 2020 at the Instituto Nacional de Ciencias MĂ©dicas y NutriciĂłn, defining severe COVID-19 as a composite of death, ICU admission or requirement for intubation (n = 3,007). We validated MSL-COVID-19 for prediction of mortality and severe disease. Using Elastic Net Cox regression, we trained (n = 1,831) and validated (n = 1,176) a model for prediction of severe COVID-19 using MSL-COVID-19 along with clinical assessments obtained at a triage setting.ResultsThe variables included in MSL-COVID-19 are: pneumonia, early onset type 2 diabetes, age > 65 years, chronic kidney disease, any form of immunosuppression, COPD, obesity, diabetes, and age ConclusionsMSL-COVID-19 predicts inpatient COVID-19 lethality. The Nutri-CoV score is an adaptation of MSL-COVID-19 to be used in a triage environment. Both scores have been deployed as web-based tools for clinical use in a triage setting

    Impact of undiagnosed type 2 diabetes and pre-diabetes on severity and mortality for SARS-CoV-2 infection

    No full text
    Introduction Diabetes and hyperglycemia are risk factors for critical COVID-19 outcomes; however, the impact of pre-diabetes and previously unidentified cases of diabetes remains undefined. Here, we profiled hospitalized patients with undiagnosed type 2 diabetes and pre-diabetes to evaluate its impact on adverse COVID-19 outcomes. We also explored the role of de novo and intrahospital hyperglycemia in mediating critical COVID-19 outcomes.Research design and methods Prospective cohort of 317 hospitalized COVID-19 cases from a Mexico City reference center. Type 2 diabetes was defined as previous diagnosis or treatment with diabetes medication, undiagnosed diabetes and pre-diabetes using glycosylated hemoglobin (HbA1c) American Diabetes Association (ADA) criteria and de novo or intrahospital hyperglycemia as fasting plasma glucose (FPG) ≥140 mg/dL. Logistic and Cox proportional regression models were used to model risk for COVID-19 outcomes.Results Overall, 159 cases (50.2%) had type 2 diabetes and 125 had pre-diabetes (39.4%), while 31.4% of patients with type 2 diabetes were previously undiagnosed. Among 20.0% of pre-diabetes cases and 6.1% of normal-range HbA1c had de novo hyperglycemia. FPG was the better predictor for critical COVID-19 compared with HbA1c. Undiagnosed type 2 diabetes (OR: 5.76, 95% CI 1.46 to 27.11) and pre-diabetes (OR: 4.15, 95% CI 1.29 to 16.75) conferred increased risk of severe COVID-19. De novo/intrahospital hyperglycemia predicted critical COVID-19 outcomes independent of diabetes status.Conclusions Undiagnosed type 2 diabetes, pre-diabetes and de novo hyperglycemia are risk factors for critical COVID-19. HbA1c must be measured early to adequately assess individual risk considering the large rates of undiagnosed type 2 diabetes in Mexico

    Socio-demographic inequalities and excess non-COVID-19 mortality during the COVID-19 pandemic: a data-driven analysis of 1 069 174 death certificates in Mexico.

    No full text
    BACKGROUND: In 2020, Mexico experienced one of the highest rates of excess mortality globally. However, the extent of non-COVID deaths on excess mortality, its regional distribution and the association between socio-demographic inequalities have not been characterized. METHODS: We conducted a retrospective municipal and individual-level study using 1 069 174 death certificates to analyse COVID-19 and non-COVID-19 deaths classified by ICD-10 codes. Excess mortality was estimated as the increase in cause-specific mortality in 2020 compared with the average of 2015-2019, disaggregated by primary cause of death, death setting (in-hospital and out-of-hospital) and geographical location. Correlates of individual and municipal non-COVID-19 mortality were assessed using mixed effects logistic regression and negative binomial regression models, respectively. RESULTS: We identified a 51% higher mortality rate (276.11 deaths per 100 000 inhabitants) compared with the 2015-2019 average period, largely attributable to COVID-19. Non-COVID-19 causes comprised one-fifth of excess deaths, with acute myocardial infarction and type 2 diabetes as the two leading non-COVID-19 causes of excess mortality. COVID-19 deaths occurred primarily in-hospital, whereas excess non-COVID-19 deaths occurred in out-of-hospital settings. Municipal-level predictors of non-COVID-19 excess mortality included levels of social security coverage, higher rates of COVID-19 hospitalization and social marginalization. At the individual level, lower educational attainment, blue-collar employment and lack of medical care assistance prior to death were associated with non-COVID-19 deaths. CONCLUSION: Non-COVID-19 causes of death, largely chronic cardiometabolic conditions, comprised up to one-fifth of excess deaths in Mexico during 2020. Non-COVID-19 excess deaths occurred disproportionately out-of-hospital and were associated with both individual- and municipal-level socio-demographic inequalities

    Identification of a threshold to discriminate fasting hypertriglyceridemia with postprandial values

    No full text
    Abstract Background Postprandial lipemia is an important cardiovascular risk factor. The assessment of postprandial lipid metabolism is a newly trend that several consortiums and countries have adopted. The aim of the study is to determine a postprandial triglyceride concentration cut-off point that accurately discriminate individuals with fasting normal triglyceride concentrations from those with fasting hypertriglyceridemia. Methods Cross sectional population-based study. A total of 212 subjects underwent an eight hours’ oral fat tolerance test. Samples were taken fasting, three, four, five, six and eight hours after the meal. The area under the receiver operating characteristic curve (c-statistic) was computed using postprandial triglycerides concentrations as independent predictor, and fasting hypertriglyceridemia as dependent variable. Results The best threshold of postprandial lipemia to discriminate fasting hypertriglyceridemia was 280 mg/dL at any hour area under the curve 0.816 (95% confidence interval 0.753–0.866), bootstrap-corrected c-statistic = 0.733 (95% confidence interval 0.68–0.86). The same value was compared with apolipoprotein B concentrations (>90th percentile) having a good performance: area under the curve 0.687 95% confidence interval 0.624–0.751). Likewise, subjects with high postprandial lipemia have higher Globo risk scores. Conclusion The 280 mg/dL cut-off point value of postprandial triglycerides concentration any time after a test meal discriminate subjects with fasting hypertriglyceridemia. This threshold has a good performance in a heterogeneous population and has a good concordance with cardiovascular risk surrogates
    corecore