3,775 research outputs found

    Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early life lead exposure might be a risk factor for neurocognitive impairment in adulthood.</p> <p>Objectives</p> <p>We sought to assess the relationship between early life environmental lead exposure and intellectual function in adulthood. We also attempted to identify which time period blood-lead concentrations are most predictive of adult outcome.</p> <p>Methods</p> <p>We recruited adults in the Boston area who had participated as newborns and young children in a prospective cohort study that examined the relationship between lead exposure and childhood intellectual function. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). The association between lead concentrations and IQ scores was examined using linear regression.</p> <p>Results</p> <p>Forty-three adults participated in neuropsychological testing. Childhood blood-lead concentration (mean of the blood-lead concentrations at ages 4 and 10 years) had the strongest relationship with Full-Scale IQ (β = -1.89 ± 0.70, p = 0.01). Full-scale IQ was also significantly related to blood-lead concentration at age 6 months (β = -1.66 ± 0.75, p = 0.03), 4 years (β = -0.90 ± 0.41, p = 0.03) and 10 years (β = -1.95 ± 0.80, p = 0.02). Adjusting for maternal IQ altered the significance of the regression coefficient.</p> <p>Conclusions</p> <p>Our study suggests that lead exposure in childhood predicts intellectual functioning in young adulthood. Our results also suggest that school-age lead exposure may represent a period of increased susceptibility. Given the small sample size, however, the potentially confounding effects of maternal IQ cannot be excluded and should be evaluated in a larger study.</p

    Neuropsychological Measures of Attention and Impulse Control among 8-Year-Old Children Exposed Prenatally to Organochlorines

    Get PDF
    Background: We previously reported associations between organochlorines and behaviors related to attention deficit hyperactivity disorder among boys and girls at 8 years of age using a teacher’s rating scale for a birth cohort in New Bedford, Massachusetts (USA)

    Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early life lead exposure might be a risk factor for neurocognitive impairment in adulthood.</p> <p>Objectives</p> <p>We sought to assess the relationship between early life environmental lead exposure and intellectual function in adulthood. We also attempted to identify which time period blood-lead concentrations are most predictive of adult outcome.</p> <p>Methods</p> <p>We recruited adults in the Boston area who had participated as newborns and young children in a prospective cohort study that examined the relationship between lead exposure and childhood intellectual function. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). The association between lead concentrations and IQ scores was examined using linear regression.</p> <p>Results</p> <p>Forty-three adults participated in neuropsychological testing. Childhood blood-lead concentration (mean of the blood-lead concentrations at ages 4 and 10 years) had the strongest relationship with Full-Scale IQ (β = -1.89 ± 0.70, p = 0.01). Full-scale IQ was also significantly related to blood-lead concentration at age 6 months (β = -1.66 ± 0.75, p = 0.03), 4 years (β = -0.90 ± 0.41, p = 0.03) and 10 years (β = -1.95 ± 0.80, p = 0.02). Adjusting for maternal IQ altered the significance of the regression coefficient.</p> <p>Conclusions</p> <p>Our study suggests that lead exposure in childhood predicts intellectual functioning in young adulthood. Our results also suggest that school-age lead exposure may represent a period of increased susceptibility. Given the small sample size, however, the potentially confounding effects of maternal IQ cannot be excluded and should be evaluated in a larger study.</p

    Inverse analysis of asteroseismic data: a review

    Full text link
    Asteroseismology has emerged as the best way to characterize the global and internal properties of nearby stars. Often, this characterization is achieved by fitting stellar evolution models to asteroseismic observations. The star under investigation is then assumed to have the properties of the best-fitting model, such as its age. However, the models do not fit the observations perfectly. This is due to incorrect or missing physics in stellar evolution calculations, resulting in predicted stellar structures that are discrepant with reality. Through an inverse analysis of the asteroseismic data, it is possible to go further than fitting stellar models, and instead infer details about the actual internal structure of the star at some locations in its interior. Comparing theoretical and observed stellar structures then enables the determination of the locations where the stellar models have discrepant structure, and illuminates a path for improvements to our understanding of stellar evolution. In this invited review, we describe the methods of asteroseismic inversions, and outline the progress that is being made towards measuring the interiors of stars.Comment: 12 pages, 1 figure. Invited review, Dynamics of the Sun and Star

    Anesthesia and cognitive performance in children: No evidence for a causal relationship

    Get PDF
    * Both authors contributed evenly to the manuscript Recent findings of an association between anesthesia administration in the first three years of life and later learning disabilities have created concerns that anesthesia has neurotoxic effects on synaptogenesis, causing later learning problems. An alternative hypothesis is that those children who are likely to undergo surgery early in life have significant medical problems that are associated with a vulnerability to learning disabilities. These two hypotheses were evaluated in a monozygotic concordant–discordant twin design. Data on anesthesia administration and learning abilities and disabilities were available for 1,143 monozygotic twin pairs (56 % female) from the Netherlands Twin Registry. Parents of the twins reported on anesthesia use before age 3 and again between ages 3 and 12 years. Near age 12, educational achievement and cognitive problems were assessed with standardized tests and teacher ratings. Results showed that twins who were exposed to anesthesia before age 3 had significantly lower educational achievement scores and significantly more cognitive problems than twins not exposed to anesthesia. However, there was one important exception: the unexposed co-twin from discordant pairs did not differ from their exposed cotwin. Thus, there is no evidence for a causal relationship between anesthesia administration and later learning-related outcomes in this sample. Rather, there is evidence for early anesthesia being a marker of an individual’s vulnerability for later learning problems, regardless of their exposure to anesthesia

    Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America

    Get PDF
    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory distributions of fish

    Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses

    Get PDF
    Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys[superscript 358]. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys[superscript 358] to Ser[superscript 358] oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.National Institutes of Health (U.S.) (R03MH085679)National Institutes of Health (U.S.) (1P30CA147882)Burroughs Wellcome FundDamon Runyon Cancer Research FoundationSmith Family FoundationStarr Cancer Consortiu

    Maternal Fish Consumption, Hair Mercury, and Infant Cognition in a U.S. Cohort

    Get PDF
    Fish and other seafood may contain organic mercury but also beneficial nutrients such as n-3 polyunsaturated fatty acids. We endeavored to study whether maternal fish consumption during pregnancy harms or benefits fetal brain development. We examined associations of maternal fish intake during pregnancy and maternal hair mercury at delivery with infant cognition among 135 mother–infant pairs in Project Viva, a prospective U.S. pregnancy and child cohort study. We assessed infant cognition by the percent novelty preference on visual recognition memory (VRM) testing at 6 months of age. Mothers consumed an average of 1.2 fish servings per week during the second trimester. Mean maternal hair mercury was 0.55 ppm, with 10% of samples > 1.2 ppm. Mean VRM score was 59.8 (range, 10.9–92.5). After adjusting for participant characteristics using linear regression, higher fish intake was associated with higher infant cognition. This association strengthened after adjustment for hair mercury level: For each additional weekly fish serving, offspring VRM score was 4.0 points higher [95% confidence interval (CI), 1.3 to 6.7]. However, an increase of 1 ppm in mercury was associated with a decrement in VRM score of 7.5 (95% CI, –13.7 to –1.2) points. VRM scores were highest among infants of women who consumed > 2 weekly fish servings but had mercury levels ≤1.2 ppm. Higher fish consumption in pregnancy was associated with better infant cognition, but higher mercury levels were associated with lower cognition. Women should continue to eat fish during pregnancy but choose varieties with lower mercury contamination

    Blood lead level and dental caries in school-age children.

    Get PDF
    The association between blood lead level and dental caries was evaluated in cross-sectional analyses of baseline data for 543 children 6-10 years old screened for enrollment in the Children's Amalgam Trial, a study designed to assess potential health effects of mercury in silver fillings. Approximately half of the children were recruited from an urban setting (Boston/Cambridge, MA, USA) and approximately half from a rural setting (Farmington, ME, USA). Mean blood lead level was significantly greater among the urban subgroup, as was the mean number of carious tooth surfaces. Blood lead level was positively associated with number of caries among urban children, even with adjustment for demographic and maternal factors and child dental practices. This association was stronger in primary than in permanent dentition and stronger for occlusal, lingual, and buccal tooth surfaces than for mesial or distal surfaces. In general, blood lead was not associated with caries in the rural subgroup. The difference between the strength of the associations in the urban and rural settings might reflect the presence of residual confounding in the former setting, the presence of greater variability in the latter setting in terms of important caries risk factors (e.g., fluoride exposure), or greater exposure misclassification in the rural setting. These findings add to the evidence supporting a weak association between children's lead exposure and caries prevalence. A biologic mechanism for lead cariogenicity has not been identified, however. Our data are also consistent with residual confounding by factors associated with both elevated lead exposure and dental caries
    corecore