11 research outputs found
Comprendre et maîtriser l'activation de la coagulation en transplantation rénale (évaluation d'un antithrombine direct dans un modèle d'autogreffe chez le porc)
PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
Modulation of Na+-K+-ATPase cell surface abundance through structural determinants on the α1-subunit
Through their ion-pumping and non-ion-pumping functions, Na+-K+-ATPase protein complexes at the plasma membrane are critical to intracellular homeostasis and to the physiological and pharmacological actions of cardiotonic steroids. Alteration of the abundance of Na+-K+-ATPase units at the cell surface is one of the mechanisms for Na+-K+-ATPase regulation in health and diseases that has been closely examined over the past few decades. We here summarize these findings, with emphasis on studies that explicitly tested the involvement of defined regions or residues on the Na+-K+-ATPase α1 polypeptide. We also report new findings on the effect of manipulating Na+-K+-ATPase membrane abundance by targeting one of these defined regions: a dileucine motif of the form [D/E]XXXL[L/I]. In this study, opossum kidney cells stably expressing rat α1 Na+-K+-ATPase or a mutant where the motif was disrupted (α1-L499V) were exposed to 30 min of substrate/coverslip-induced-ischemia followed by reperfusion (I-R). Biotinylation studies suggested that I-R itself acted as an inducer of Na+-K+-ATPase internalization and that surface expression of the mutant was higher than the native Na+-K+-ATPase before and after ischemia. Annexin V/propidium iodide staining and lactate dehydrogenase release suggested that I-R injury was reduced in α1-L499V-expressing cells compared with α1-expressing cells. Hence, modulation of Na+-K+-ATPase cell surface abundance through structural determinants on the α-subunit is an important mechanism of regulation of cellular Na+-K+-ATPase in various physiological and pathophysiological conditions, with a significant impact on cell survival in face of an ischemic stress
Direct Thrombin Inhibitor Prevents Delayed Graft Function in a Porcine Model of Renal Transplantation
Chantier qualité GABackground. Kidney transplantations from donors after cardiac arrest (DCA) are characterized by an increase in the occurrence of delayed graft function and primary nonfunction. In this study, Melagatran, a selective reversible direct thrombin inhibitor was used to limit renal injury in a DCA pig kidney transplantation model. Methods. We used a porcine model of DCA to study the effects of treatment with Melagatran in the peri-conservation period. Thromboelastography was used to check Melagatran antithrombin effect on in vitro clot formation. Reverse-transcriptase polymerase chain reaction was used to analyze the peripheral immune cells activation status. Renal function and morphologic study were performed at days 1 and 7. Finally, we analyzed the mechanisms of Melagatran protection on kidney microvasculature primary endothelial cells. Results. Prolongation of coagulation time (Ex-Tem) was observed 10 min after injection; however, Melagatran did not modulate increases of thrombin-antithrombin complexes following reperfusion. Melagatran significant treatment lowered the proinflammatory status of circulating immune cells. Animal's survival was increased in Melagatran-treated groups (9 of 10 in Melagatran groups vs. 4 of 10 in controls at day 7). Renal injury and inflammation were also significantly reduced in treated groups. We also demonstrated a direct protective effect of Melagatran against endothelial cell activation and inflammation in vitro. Conclusion. Direct thrombin inhibitor administration in the periconservation period improved graft outcome and reduced renal injury in a model of DCA
Expression and modulation of translocator protein and its partners by hypoxia reoxygenation or ischemia and reperfusion in porcine renal models
Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is an 18-kDa drug- and cholesterol-binding protein localized to the outer mitochondrial membrane and implicated in a variety of cell and mitochondrial functions. To determine the role of TSPO in ischemia-reperfusion injury (IRI), we used both in vivo and in vitro porcine models: an in vivo renal ischemia model where different conservation modalities were tested and an in vitro model where TSPO-transfected porcine proximal tubule LLC-PK1 cells were exposed to hypoxia and oxidative stress. The expression of TSPO and its partners in steroidogenic cells, steroidogenic acute regulatory protein (StAR) and cytochrome P-450 side chain cleavage CYP11A1, as well as the impact of TSPO overexpression and exposure to TSPO ligands in vitro in hypoxia-ischemia conditions were investigated. Hypoxia induced caspase activation, reduction of ATP content, and LLC-PK1 cell death. Transfection and overexpression of TSPO rescued the cells from the detrimental effects of hypoxia and reoxygenation. Moreover, TSPO overexpression was accompanied by a reduction of H2O2-induced necrosis. TSPO drug ligands did not affect TSPO-mediated functions. In vivo, TSPO expression was modulated by IRI and during regeneration particularly in proximal tubule cells, which do not express this protein at the basal level. Under the same conditions, StAR and CYP11A1 protein and gene expression was reduced without apparent relation to TSPO changes. Pregnenolone was identified and measured in the pig kidney. Pregnenolone synthesis was not affected by the experimental conditions used. Taken together, these results indicate that changes in TSPO expression in kidney regenerating tissue could be important for renal protection and maintenance of kidney function
Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure
International audienceAims: Previous studies have reported that decreased serine 208 phosphorylation of troponin T (TnTpSer208) is associated with ischaemic heart failure (HF), but the molecular mechanisms and functional consequences of these changes are unknown. The aim of this study was to characterize the balance between serine phosphorylation and O-N-acetylglucosaminylation (O-GlcNAcylation) of TnT in HF, its mechanisms, and the consequences of modulating these post-translational modifications.Methods and results: Decreased TnTpSer208 levels in the left ventricles of HF male Wistar rats were associated with reduced expression of PKCε but not of other cardiac PKC isoforms. In both isolated perfused rat hearts and cultured neonatal cardiomyocytes, the PKCε inhibitor εV1-2 decreased TnTpSer208 and simultaneously decreased cardiac contraction in isolated hearts and beating amplitude in neonatal cardiomyocytes (measured by atomic force microscopy). Down-regulating PKCε by silencing RNA (siRNA) also reduced TnTpSer208 in these cardiomyocytes, and PKCε-/- mice had lower TnTpSer208 levels than the wild-type. In parallel, HF increased TnT O-GlcNAcylation via both increased O-GlcNAc transferase and decreased O-GlcNAcase activity. Increasing O-GlcNAcylation (via O-GlcNAcase inhibition with Thiamet G) decreased TnTpSer208 in isolated hearts, while reducing O-GlcNAcylation (O-GlcNAc transferase siRNA) increased TnTpSer208 in neonatal cardiomyocytes. Mass spectrometry and NMR analysis identified O-GlcNAcylation of TnT on Ser190.Conclusion: These data demonstrate interplay between Ser208 phosphorylation and Ser190 O-GlcNAcylation of TnT in ischaemic HF, linked to decreased activity of both PKCε and O-GlcNAcase and increased O-GlcNAc transferase activity. Modulation of these post-translational modifications of TnT may be a new therapeutic strategy in HF
Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure
International audienc
Penetrance estimation of Alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes
International audienceAbstract Background Alzheimer disease (AD) is a common complex disorder with a high genetic component. Loss-of-function (LoF) SORL1 variants are one of the strongest AD genetic risk factors. Estimating their age-related penetrance is essential before putative use for genetic counseling or preventive trials. However, relative rarity and co-occurrence with the main AD risk factor, APOE -ε4, make such estimations difficult. Methods We proposed to estimate the age-related penetrance of SORL1 -LoF variants through a survival framework by estimating the conditional instantaneous risk combining (i) a baseline for non-carriers of SORL1- LoF variants, stratified by APOE-ε4 , derived from the Rotterdam study ( N = 12,255), and (ii) an age-dependent proportional hazard effect for SORL1- LoF variants estimated from 27 extended pedigrees (including 307 relatives ≥ 40 years old, 45 of them having genotyping information) recruited from the French reference center for young Alzheimer patients. We embedded this model into an expectation-maximization algorithm to accommodate for missing genotypes. To correct for ascertainment bias, proband phenotypes were omitted. Then, we assessed if our penetrance curves were concordant with age distributions of APOE -ε4-stratified SORL1- LoF variant carriers detected among sequencing data of 13,007 cases and 10,182 controls from European and American case-control study consortia. Results SORL1- LoF variants penetrance curves reached 100% (95% confidence interval [99–100%]) by age 70 among APOE -ε4ε4 carriers only, compared with 56% [40–72%] and 37% [26–51%] in ε4 heterozygous carriers and ε4 non-carriers, respectively. These estimates were fully consistent with observed age distributions of SORL1- LoF variant carriers in case-control study data. Conclusions We conclude that SORL1- LoF variants should be interpreted in light of APOE genotypes for future clinical applications
Type 1 Diabetes in People Hospitalized for COVID-19: New Insights From the CORONADO Study
International audienc
Rilpivirine in HIV-1-positive women initiating pregnancy: to switch or not to switch?
International audienceBackgroundSafety data about rilpivirine use during pregnancy remain scarce, and rilpivirine plasma concentrations are reduced during second/third trimesters, with a potential risk of viral breakthroughs. Thus, French guidelines recommend switching to rilpivirine-free combinations (RFCs) during pregnancy.ObjectivesTo describe the characteristics of women initiating pregnancy while on rilpivirine and to compare the outcomes for virologically suppressed subjects continuing rilpivirine until delivery versus switching to an RFC.MethodsIn the ANRS-EPF French Perinatal cohort, we included women on rilpivirine at conception in 2010–18. Pregnancy outcomes were compared between patients continuing versus interrupting rilpivirine. In women with documented viral suppression (<50 copies/mL) before 14 weeks of gestation (WG) while on rilpivirine, we compared the probability of viral rebound (≥50 copies/mL) during pregnancy between subjects continuing rilpivirine versus those switching to RFC.ResultsAmong 247 women included, 88.7% had viral suppression at the beginning of pregnancy. Overall, 184 women (74.5%) switched to an RFC (mostly PI/ritonavir-based regimens) at a median gestational age of 8.0 WG. Plasma HIV-1 RNA nearest delivery was <50 copies/mL in 95.6% of women. Among 69 women with documented viral suppression before 14 WG, the risk of viral rebound was higher when switching to RFCs than when continuing rilpivirine (20.0% versus 0.0%, P = 0.046). Delivery outcomes were similar between groups (overall birth defects, 3.8/100 live births; pregnancy losses, 2.0%; preterm deliveries, 10.6%). No HIV transmission occurred.ConclusionsIn virologically suppressed women initiating pregnancy, continuing rilpivirine was associated with better virological outcome than changing regimen. We did not observe a higher risk of adverse pregnancy outcomes