10 research outputs found

    Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    Get PDF
    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examined nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the contiguous United States. If a cell meets the requirements of each criterion, the cell is deemed a candidate area for siting a specific power generation form relative to a reference plant for that power type. Some SSEC parameters preclude siting a power plant because of an environmental, regulatory, or land-use constraint. Other SSEC assist in identifying less favorable areas, such as proximity to hazardous operations. All of the selected SSEC tend to recommend against sites. The focus of the ORNL electrical generation source siting study is on identifying candidate areas from which potential sites might be selected, stopping short of performing any detailed site evaluations or comparisons. This approach is designed to quickly screen for and characterize candidate areas. Critical assumptions supporting this work include the supply of cooling water to thermoelectric power generation; a methodology to provide an adequate siting footprint for typical power plant applications; a methodology to estimate thermoelectric plant capacity while accounting for available cooling water; and a methodology to account for future ({approx}2035) siting limitations as population increases and demands on freshwater sources change. OR-SAGE algorithms were built to account for these critical assumptions. Stream flow is the primary thermoelectric plant cooling source evaluated in this study. All cooling was assumed to be provided by a closed-cycle cooling (CCC) system requiring makeup water to account for evaporation and blowdown. Limited evaluations of shoreline cooling and the use of municipal processed water (gray) cooling were performed. Using a representative set of SSEC as input to the OR-SAGE tool and employing the accompanying critical assumptions, independent results for the various power generation sources studied were calculated

    Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    Get PDF
    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same technology, and (3) different architectures within the same technology. Using this convention, the first diversity usage family, designated Strategy A, is characterized by fundamentally diverse technologies. Strategy A at the system or platform level is illustrated by the example of analog and digital implementations. The second diversity usage family, designated Strategy B, is achieved through the use of distinctly different technologies. Strategy B can be described in terms of different digital technologies, such as the distinct approaches represented by general-purpose microprocessors and field-programmable gate arrays. The third diversity usage family, designated Strategy C, involves the use of variations within a technology. An example of Strategy C involves different digital architectures within the same technology, such as that provided by different microprocessors (e.g., Pentium and Power PC). The grouping of diversity criteria combinations according to Strategies A, B, and C establishes baseline diversity usage and facilitates a systematic organization of strategic approaches for coping with CCF vulnerabilities. Effectively, these baseline sets of diversity criteria constitute appropriate CCF mitigating strategies for digital safety systems. The strategies represent guidance on acceptable diversity usage and can be applied directly to ensure that CCF vulnerabilities identified through a D3 assessment have been adequately resolved. Additionally, a framework has been generated for capturing practices regarding diversity usage and a tool has been developed for the systematic assessment of the comparative effect of proposed diversity strategies (see Appendix A)

    Evaluation of Suitability of Selected Set of Department of Defense Military Bases and Department of Energy Facilities for Siting a Small Modular Reactor

    No full text
    This report summarizes the approach that ORNL developed for screening a sample set of US Department of Defense (DOD) military base sites and DOE sites for possible powering with an SMR; the methodology employed, including spatial modeling; and initial results for several sample sites. The objective in conducting this type of siting evaluation is demonstrate the capability to characterize specific DOD and DOE sites to identify any particular issues associated with powering the sites with an SMR using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site

    Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    No full text
    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future
    corecore