397 research outputs found
Self-guided wakefield experiments driven by petawatt class ultra-short laser pulses
We investigate the extension of self-injecting laser wakefield experiments to
the regime that will be accessible with the next generation of petawatt class
ultra-short pulse laser systems. Using linear scalings, current experimental
trends and numerical simulations we determine the optimal laser and target
parameters, i.e. focusing geometry, plasma density and target length, that are
required to increase the electron beam energy (to > 1 GeV) without the use of
external guiding structures.Comment: 15 pages, 8 figure
SDS-PAGE-Based Quantitative Assay of Hemolymph Proteins in Honeybees: Progress and Prospects for Field Application
In human and veterinary medicine, serum proteins are considered to be useful biomarkers for assessing the health and nutritional status of the organism. Honeybee hemolymph has a unique proteome that could represent a source of valuable biomarkers. Therefore, the aims of this study were to separate and identify the most abundant proteins in the hemolymph of worker honeybees to suggest a panel of these proteins that could represent useful biomarkers for assessing the nutritional and health status of the colonies and, finally, to analyze them in different periods of the year. Four apiaries were selected in the province of Bologna, and the bees were analyzed in April, May, July, and November. Thirty specimens from three hives of each apiary were sampled and their hemolymph was collected. The most represented bands obtained after 1D sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were cut from the gel, and the proteins were identified using an LC-ESI-Q-MS/MS System. A total of twelve proteins were unmistakably identified; the two most abundant proteins were apolipophorin and vitellogenin, which are known biomarkers of bee trophic and health status. The two other proteins identified were transferrin and hexamerin 70a, the first being involved in iron homeostasis and the second being a storage protein. Most of these proteins showed an increase from April to November, mirroring the physiological changes of honeybees during the productive season. The current study suggests a panel of biomarkers from honeybee hemolymph worth testing under different physiological and pathological field conditions
A Bright Spatially-Coherent Compact X-ray Synchrotron Source
Each successive generation of x-ray machines has opened up new frontiers in
science, such as the first radiographs and the determination of the structure
of DNA. State-of-the-art x-ray sources can now produce coherent high brightness
keV x-rays and promise a new revolution in imaging complex systems on nanometre
and femtosecond scales. Despite the demand, only a few dedicated synchrotron
facilities exist worldwide, partially due the size and cost of conventional
(accelerator) technology. Here we demonstrate the use of a recently developed
compact laser-plasma accelerator to produce a well-collimated,
spatially-coherent, intrinsically ultrafast source of hard x-rays. This method
reduces the size of the synchrotron source from the tens of metres to
centimetre scale, accelerating and wiggling a high electron charge
simultaneously. This leads to a narrow-energy spread electron beam and x-ray
source that is >1000 times brighter than previously reported plasma wiggler and
thus has the potential to facilitate a myriad of uses across the whole spectrum
of light-source applications.Comment: 5 pages, 4 figure
Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields
Transport modeling of idealized, cone-guided fast ignition targets indicates
the severe challenge posed by fast-electron source divergence. The hybrid
particle-in-cell [PIC] code Zuma is run in tandem with the
radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel
heating, and thermonuclear burn. The fast electron source is based on a 3D
explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi
two-temperature energy spectrum, and a divergent angle spectrum (average
velocity-space polar angle of 52 degrees). Transport simulations with the
PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a
modest 70 micron standoff distance from fast-electron injection to the dense
fuel. However, artificially collimating the source gives an ignition energy of
132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields.
Uniform fields ~50 MG are sufficient to recover the artificially collimated
ignition energy. Experiments at the Omega laser facility have generated fields
of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such
imploded fields are however more compressed in the transport region than in the
laser absorption region. When fast electrons encounter increasing field
strength, magnetic mirroring can reflect a substantial fraction of them and
reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite
radius, is presented as one field configuration which circumvents mirroring.Comment: 16 pages, 17 figures, submitted to Phys. Plasma
Dynamic Control of Laser Produced Proton Beams
The emission characteristics of intense laser driven protons are controlled
using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a
few ps timescale. The field structures are achieved by exploiting the high
potential of the target (reaching multi-MV during the laser interaction).
Suitably shaped targets result in a reduction in the proton beam divergence,
and hence an increase in proton flux while preserving the high beam quality.
The peak focusing power and its temporal variation are shown to depend on the
target characteristics, allowing for the collimation of the inherently highly
divergent beam and the design of achromatic electrostatic lenses.Comment: 9 Pages, 5 figure
Individuación y mercado educacional en chile
Este artículo sistematiza hallazgos de distintas investigaciones sobre la educación chilena para comprender los mercados educativos. A sus reportados déficits de equidad y calidad, se discute su efecto profundizador de la individualización. Prácticas antes emplazadas en el mundo de la vida o en la política ahora son colonizadas mercantilmente, articulando la experiencia de vida como continuo individual de elección de mercado y rendimiento alienado. Se experimenta el mercado educativo como constricción de libertad, lo que se suma a la inequidad y la baja calidad promedio documentada
Cone-Guided Fast Ignition with no Imposed Magnetic Fields
Simulations of ignition-scale fast ignition targets have been performed with
the new integrated Zuma-Hydra PIC-hydrodynamic capability. We consider an
idealized spherical DT fuel assembly with a carbon cone, and an
artificially-collimated fast electron source. We study the role of E and B
fields and the fast electron energy spectrum. For mono-energetic 1.5 MeV fast
electrons, without E and B fields, the energy needed for ignition is E_f^{ig} =
30 kJ. This is about 3.5x the minimal deposited ignition energy of 8.7 kJ for
our fuel density of 450 g/cm^3. Including E and B fields with the resistive
Ohm's law E = \eta J_b gives E_f^{ig} = 20 kJ, while using the full Ohm's law
gives E_f^{ig} > 40 kJ. This is due to magnetic self-guiding in the former
case, and \nabla n \times \nabla T magnetic fields in the latter. Using a
realistic, quasi two-temperature energy spectrum derived from PIC laser-plasma
simulations increases E_f^{ig} to (102, 81, 162) kJ for (no E/B, E = \eta J_b,
full Ohm's law). This stems from the electrons being too energetic to fully
stop in the optimal hot spot depth.Comment: Minor revisions in response to referee comment
Environmental risk factors for the development of oral squamous cell carcinoma in cats
Background: Risk factors for oral squamous cell carcinoma (OSCC) in cats are derived from a single study dated almost 20 years ago. The relationship between inflammation of oral tissues and OSCC is still unclear. Objectives: To investigate previously proposed and novel potential risk factors for OSCC development, including oral inflammatory diseases. Animals: Hundred cats with OSCC, 70 cats with chronic gingivostomatitis (CGS), 63 cats with periodontal disease (PD), and 500 controls. Methods: Prospective, observational case-control study. Cats with OSCC were compared with an age-matched control sample of client-owned cats and cats with CGS or PD. Owners of cats completed an anonymous questionnaire including demographic, environmental and lifestyle information. Results: On multivariable logistic regression, covariates significantly associated with an increased risk of OSCC were rural environment (OR: 1.77; 95% CI: 1.03-3.04; P =.04), outdoor access (OR: 1.68; 95% CI: 1.07-2.63; P =.02), environmental tobacco smoke (OR: 1.77; 95% CI: 1.05-3; P =.03), and petfood containing chemical additives (OR: 1.98; 95% CI: 1.04-3.76; P =.04). Risk factors shared with CGS and PD were outdoor access and petfood containing chemical additives, respectively. A history of oral inflammation was reported in 35% of cats with OSCC but did not emerge as a risk factor. Conclusions and Clinical Importance: The study proposes novel potential risk factors for OSCC in cats. Although a history of inflammatory oral disease was not significantly more frequent compared with random age-matched controls, OSCC shared several risk factors with CGS and PD
Vírus influenza e bactéria proteolítica co-infectantes em trato respiratório de indivíduos com manifestações respiratórias
A role for proteolytic bacteria in the exacerbation of influenza virus has been shown in natural hosts such as pigs and humans. Four hundred seven samples were collected from the respiratory tract of individuals presenting clinical manifestations, during influenza season (2003-2005) in São Paulo City. The aim of this study was to evaluate the incidence of determined bacteria co-infecting virus in human respiratory tract. Tests, such as bacteriological, immunofluorescence (IF), RT/PCR and hemagglutination (HA) were used for bacterial and viral investigation. Thirty seven (9.09%) positive for influenza virus were screened by IF. The RT/PCR confirmed the presence of influenza virus in these samples. Bacterial and agar casein tests demonstrated that 18 (48.64%) individuals were infected with proteolytic bacteria such as Staphylococcus spp., Streptococcus spp. and Pseudomonas spp. Among these samples, 13 (35.13%) were co-infected with influenza A virus. Influenza type B, co-infecting bacteria were found in five (13.51%) samples. In vitro the S. aureus protease increased the influenza HA titer after contact for 30 min at 25 ºC. Results revealed the occurrence of co-infection with proteolytic bacteria and influenza in the evaluated individuals. This finding corroborates that virus versus bacteria synergism could be able to potentiate respiratory infection, increasing damage to hosts.O papel da bactéria proteolítica na exacerbação do vírus influenza tem sido demonstrado em hospedeiros naturais como porcos e humanos. Foram coletadas 407 amostras do trato respiratório de indivíduos apresentando manifestações clínicas, durante a estação da influenza (2003-2005) na cidade de São Paulo. Este trabalho teve como objetivo avaliar a incidência de determinadas bactérias que junto com vírus co-infectarem o trato respiratório humano. Testes bacteriológicos, e virológicos como imunofluorescência (IF), RT/PCR e hemaglutinação (HA) foram usados nas investigações viral e bacteriana. Pelo teste de IF foram selecionadas trinta e sete (9,09%) amostras positivas para o vírus influenza. A presença do vírus influenza foi confirmada pela técnica de RT/PCR. Pelos testes bacteriológicos e do agar caseina, verificou-se que 18 (48,64%) dos indivíduos foram infectados com bactérias proteolíticas tais como Staphylococcus spp., Streptococcus spp. e Pseudomonas spp. Destas amostras, 13 (35,13%) foram co-infectadas com vírus influenza tipo A, e 5 (13,51%) com influenza tipo B. No experimento in vitro com influenza e S. aureus, detectou-se aumento do título hemaglutinante deste vírus, após contacto de 30 min a 25 ºC. Os resultados obtidos revelaram a ocorrência de co-infecção com bactéria proteolítica e vírus influenza nos indivíduos avaliados. Estes achados corroboram com a investigação do sinergismo, entre bactéria e vírus, que poderia ser capaz de potencializar infecção respiratória, aumentando os riscos aos hospedeiros
- …