44 research outputs found

    Changes in LXR signaling influence early-pregnancy lipogenesis and protect against dysregulated fetoplacental lipid homeostasis

    Get PDF
    Human pregnancy is associated with enhanced de novo lipogenesis in the early stages followed by hyperlipidemia during advanced gestation. Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that stimulate de novo lipogenesis and also promote the efflux of cholesterol from extrahepatic tissues followed by its transport back to the liver for biliary excretion. Although LXR is recognized as a master regulator of triglyceride and cholesterol homeostasis, it is unknown whether it facilitates the gestational adaptations in lipid metabolism. To address this question, biochemical profiling, protein quantification, and gene expression studies were used, and gestational metabolic changes in T0901317-treated wild-type mice and Lxrab-/- mutants were investigated. Here, we show that altered LXR signaling contributes to the enhanced lipogenesis in early pregnancy by increasing the expression of hepatic Fas and stearoyl-CoA desaturase 1 (Scd1). Both the pharmacological activation of LXR with T0901317 and the genetic ablation of its two isoforms disrupted the increase in hepatic fatty acid biosynthesis and the development of hypertriglyceridemia during early gestation. We also demonstrate that absence of LXR enhances maternal white adipose tissue lipolysis, causing abnormal accumulation of triglycerides, cholesterol, and free fatty acids in the fetal liver. Together, these data identify LXR as an important factor in early-pregnancy lipogenesis that is also necessary to protect against abnormalities in fetoplacental lipid homeostasis

    Alterations in PGC1[alfa] expression levels are involved in colorectal cancer risk: a qualitative systematic review

    Get PDF
    Background: Colorectal cancer (CRC) is a major global public health problem and the second leading cause of cancer-related death. Mitochondrial dysfunction has long been suspected to be involved in this type of tumorigenesis, as supported by an accumulating body of research evidence. However, little is known about how mitochondrial alterations contribute to tumorigenesis. Mitochondrial biogenesis is a fundamental cellular process required to maintain functional mitochondria and as an adaptive mechanism in response to changing energy requirements. Mitochondrial biogenesis is regulated by peroxisome proliferator-activated receptor gamma coactivator 1-? (PPARGC1A or PGC1?). In this paper, we report a systematic review to summarize current evidence on the role of PGC1? in the initiation and progression of CRC. The aim is to provide a basis for more comprehensive research. Methods: The literature search, data extraction and quality assessment were performed according to the document Guidance on the Conduct of Narrative Synthesis in Systematic Reviews and the PRISMA declaration. Results: The studies included in this review aimed to evaluate whether increased or decreased PGC1? expression affects the development of CRC. Each article proposes a possible molecular mechanism of action and we create two concept maps. Conclusion: Our systematic review indicates that altered expression of PGC1? modifies CRC risk. Most studies showed that overexpression of this gene increases CRC risk, while some studies indicated that lower than normal expression levels could increase CRC risk. Thus, various authors propose PGC1? as a good candidate molecular target for cancer therapy. Reducing expression of this gene could help to reduce risk or progression of CRC

    A beer a minute in Texas football: Heavy drinking and the heroizing of the antihero in Friday Night Lights

    Get PDF
    This article applies a qualitative framing analysis to the first three seasons of the television series Friday Night Lights, focusing particularly on its incorporation of heavy drinking into narrative representations of the player whose character is most consistently central to the game of football as fictionally mediated in small-town Texas over the course of those three seasons. The analysis suggests that over the course of that period Friday Night Lights embeds nuanced social meanings in its framing of alcohol use by that player and other characters so as to associate it with multiple potential outcomes. Yet among those outcomes, the most dominant framing works to, in effect, reverse a progression through which media representations historically evolved from a heroic model toward an antihero model, with heavy drinking central to that narrative process of meaning-making in such messages.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Changes in LXR signaling influence early-pregnancy lipogenesis and protect against dysregulated fetoplacental lipid homeostasis

    Get PDF
    Human pregnancy is associated with enhanced de novo lipogenesis in the early stages followed by hyperlipidemia during advanced gestation. Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that stimulate de novo lipogenesis and also promote the efflux of cholesterol from extrahepatic tissues followed by its transport back to the liver for biliary excretion. Although LXR is recognized as a master regulator of triglyceride and cholesterol homeostasis, it is unknown whether it facilitates the gestational adaptations in lipid metabolism. To address this question, biochemical profiling, protein quantification, and gene expression studies were used, and gestational metabolic changes in T0901317-treated wild-type mice and Lxrab-/- mutants were investigated. Here, we show that altered LXR signaling contributes to the enhanced lipogenesis in early pregnancy by increasing the expression of hepatic Fas and stearoyl-CoA desaturase 1 (Scd1). Both the pharmacological activation of LXR with T0901317 and the genetic ablation of its two isoforms disrupted the increase in hepatic fatty acid biosynthesis and the development of hypertriglyceridemia during early gestation. We also demonstrate that absence of LXR enhances maternal white adipose tissue lipolysis, causing abnormal accumulation of triglycerides, cholesterol, and free fatty acids in the fetal liver. Together, these data identify LXR as an important factor in early-pregnancy lipogenesis that is also necessary to protect against abnormalities in fetoplacental lipid homeostasis

    Selective Activation of Nuclear Bile Acid Receptor FXR in the Intestine Protects Mice Against Cholestasis.

    Full text link
    BACKGROUND & AIMS: Cholestasis is a liver disorder characterized by impaired bile flow, reduction of bile acids (BAs) in the intestine, and retention of BAs in the liver. The farnesoid X receptor (FXR) is the transcriptional regulator of BA homeostasis. Activation of FXR by BAs reduces circulating BA levels in a feedback mechanism, repressing hepatic cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme for the conversion of cholesterol to BAs. This mechanism involves the hepatic nuclear receptor small heterodimer partner and the intestinal fibroblast growth factor (FGF) 19 and 15. We investigated the role of activation of intestine-specific FXR in reducing hepatic levels of BAs and protecting the liver from cholestasis in mice. METHODS: We generated transgenic mice that express a constitutively active FXR in the intestine. Using FXR gain- and loss-of-function models, we studied the roles of intestinal FXR in mice with intrahepatic and extrahepatic cholestasis. RESULTS: Selective activation of intestinal FXR induced FGF15 and repressed hepatic Cyp7a1, reducing the pool size of BAs and changing the BA pool composition. Activation of intestinal FXR protected mice from obstructive extrahepatic cholestasis after bile duct ligation or administration of α-naphthylisothiocyanate. In Mdr2(-/-) mice, transgenic expression of activated FXR in the intestine protected against liver damage, whereas absence of FXR promoted progression of liver disease. CONCLUSIONS: Activation of FXR transcription in the intestine protects the liver from cholestasis in mice by inducing FGF15 expression and reducing the hepatic pool of BA; this approach might be developed to reverse cholestasis in patient

    Maternal glucose homeostasis is impaired in mouse models of gestational cholestasis

    Get PDF
    Women with intrahepatic cholestasis of pregnancy (ICP), a disorder characterised by raised serum bile acids, are at increased risk of developing gestational diabetes mellitus and have impaired glucose tolerance whilst cholestatic. FXR and TGR5 are modulators of glucose metabolism, and FXR activity is reduced in normal pregnancy, and further in ICP. We aimed to investigate the role of raised serum bile acids, FXR and TGR5 in gestational glucose metabolism using mouse models. Cholic acid feeding resulted in reduced pancreatic β-cell proliferation and increased apoptosis in pregnancy, without altering insulin sensitivity, suggesting that raised bile acids affect β-cell mass but are insufficient to impair glucose tolerance. Conversely, pregnant Fxr−/− and Tgr5−/− mice are glucose intolerant and have reduced insulin secretion in response to glucose challenge, and Fxr−/− mice are also insulin resistant. Furthermore, fecal bile acids are reduced in pregnant Fxr−/− mice. Lithocholic acid and deoxycholic acid, the principal ligands for TGR5, are decreased in particular. Therefore, we propose that raised serum bile acids and reduced FXR and TGR5 activity contribute to the altered glucose metabolism observed in ICP
    corecore