2 research outputs found

    Insulin as Monotherapy and in Combination with Other Glucose-Lowering Drugs Is Related to Increased Risk of Diagnosis of Pneumonia: A Longitudinal Assessment over Two Years

    No full text
    Objective: Patients with type 2 diabetes mellitus (T2DM) are at an increased risk of developing infectious diseases such as pneumonia. Hitherto, there has been uncertainty as to whether there is a relationship between different antidiabetic drug combinations and development of pneumonia in this specific cohort. Research Design and Methods: In this longitudinal retrospective study we used multiple logistic regression analysis to assess the odds ratios (ORs) of pneumonia during an observational period of 2 years in 31,397 patients with T2DM under previously prescribed stable antidiabetic drug combinations over a duration of 4 years in comparison to 6568 T2DM patients without drug therapy over 4 years adjusted for age, sex and hospitalization duration. Results: Of the 37,965 patients with T2DM, 3720 patients underwent stable monotherapy treatment with insulin (mean age: 66.57 ± 9.72 years), 2939 individuals (mean age: 70.62 ± 8.95 y) received stable statin and insulin therapy, and 1596 patients were treated with a stable combination therapy of metformin, insulin and statins (mean age: 68.27 ± 8.86 y). In comparison to the control group without antidiabetic drugs (mean age: 72.83 ± 9.96 y), individuals undergoing insulin monotherapy (OR: 2.07, CI: 1.54–2.79, p < 0.001); insulin and statin combination therapy (OR: 2.24, CI: 1.68–3.00, p < 0.001); metformin, insulin and statin combination therapy (OR: 2.27, CI: 1.55–3.31, p < 0.001); statin, insulin and dipeptidyl peptidase-4 inhibitor (DPP-IV inhibitor) combination therapy (OR: 4.31, CI: 1.80–10.33, p = 0.001); as well as individuals treated with metformin and sulfonylureas (OR: 1.70, CI: 1.08–2.69, p = 0.02) were at increased risk of receiving a diagnosis of pneumonia. Conclusions: Stable monotherapy with insulin, but also in combination with other antidiabetic drugs, is related to an increased risk of being diagnosed with pneumonia during hospital stays in patients with type 2 diabetes mellitus compared to untreated controls

    Interannual variation in land-use intensity enhances grassland multidiversity

    No full text
    Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation
    corecore