4,767 research outputs found
Curious behaviour of the diffusion coefficient and friction force for the strongly inhomogeneous HMF model
We present first elements of kinetic theory appropriate to the inhomogeneous
phase of the HMF model. In particular, we investigate the case of strongly
inhomogeneous distributions for and exhibit curious behaviour of the
force auto-correlation function and friction coefficient. The temporal
correlation function of the force has an oscillatory behaviour which averages
to zero over a period. By contrast, the effects of friction accumulate with
time and the friction coefficient does not satisfy the Einstein relation. On
the contrary, it presents the peculiarity to increase linearly with time.
Motivated by this result, we provide analytical solutions of a simplified
kinetic equation with a time dependent friction. Analogies with
self-gravitating systems and other systems with long-range interactions are
also mentioned
Kinetic theory of point vortices: diffusion coefficient and systematic drift
We develop a kinetic theory for point vortices in two-dimensional
hydrodynamics. Using standard projection operator technics, we derive a
Fokker-Planck equation describing the relaxation of a ``test'' vortex in a bath
of ``field'' vortices at statistical equilibrium. The relaxation is due to the
combined effect of a diffusion and a drift. The drift is shown to be
responsible for the organization of point vortices at negative temperatures. A
description that goes beyond the thermal bath approximation is attempted. A new
kinetic equation is obtained which respects all conservation laws of the point
vortex system and satisfies a H-theorem. Close to equilibrium this equation
reduces to the ordinary Fokker-Planck equation.Comment: 50 pages. To appear in Phys. Rev.
Magnetic Field and Pressure Phase Diagrams of Uranium Heavy-Fermion Compound UZn
We have performed magnetization measurements at high magnetic fields of up to
53 T on single crystals of a uranium heavy-fermion compound UZn
grown by the Bridgman method. In the antiferromagnetic state below the N\'{e}el
temperature = 9.7 K, a metamagnetic transition is found at
32 T for the field along the [110] direction (-axis). The
magnetic phase diagram for the field along the [110] direction is
given. The magnetization curve shows a nonlinear increase at 35
T in the paramagnetic state above up to a characteristic
temperature where the magnetic susceptibility or
electrical resistivity shows a maximum value. This metamagnetic behavior of the
magnetization at is discussed in comparison with the metamagnetic
magnetism of the heavy-fermion superconductors UPt, URuSi, and
UPdAl. We have also carried out high-pressure resistivity measurement
on UZn using a diamond anvil cell up to 8.7 GPa. Noble gas argon was
used as a pressure-transmitting medium to ensure a good hydrostatic
environment. The N\'{e}el temperature is almost
pressure-independent up to 4.7 GPa and starts to increase in the
higher-pressure region. The pressure dependences of the coefficient of the
term in the electrical resistivity , the antiferromagnetic gap
, and the characteristic temperature are
discussed. It is found that the effect of pressure on the electronic states in
UZn is weak compared with those in the other heavy fermion
compounds
Kinetic theory of point vortices in two dimensions: analytical results and numerical simulations
We develop the kinetic theory of point vortices in two-dimensional
hydrodynamics and illustrate the main results of the theory with numerical
simulations. We first consider the evolution of the system "as a whole" and
show that the evolution of the vorticity profile is due to resonances between
different orbits of the point vortices. The evolution stops when the profile of
angular velocity becomes monotonic even if the system has not reached the
statistical equilibrium state (Boltzmann distribution). In that case, the
system remains blocked in a sort of metastable state with a non standard
distribution. We also study the relaxation of a test vortex in a steady bath of
field vortices. The relaxation of the test vortex is described by a
Fokker-Planck equation involving a diffusion term and a drift term. The
diffusion coefficient, which is proportional to the density of field vortices
and inversely proportional to the shear, usually decreases rapidly with the
distance. The drift is proportional to the gradient of the density profile of
the field vortices and is connected to the diffusion coefficient by a
generalized Einstein relation. We study the evolution of the tail of the
distribution function of the test vortex and show that it has a front
structure. We also study how the temporal auto-correlation function of the
position of the test vortex decreases with time and find that it usually
exhibits an algebraic behavior with an exponent that we compute analytically.
We mention analogies with other systems with long-range interactions
Evolution of the Red Sequence Giant to Dwarf Ratio in Galaxy Clusters out to z ~ 0.5
We analyze deep g' and r' band data of 97 galaxy clusters imaged with MegaCam
on the Canada-France-Hawaii telescope. We compute the number of luminous
(giant) and faint (dwarf) galaxies using criteria based on the definitions of
de Lucia et al. (2007). Due to excellent image quality and uniformity of the
data and analysis, we probe the giant-to-dwarf ratio (GDR) out to z ~ 0.55.
With X-ray temperature (Tx) information for the majority of our clusters, we
constrain, for the first time, the Tx-corrected giant and dwarf evolution
separately. Our measurements support an evolving GDR over the redshift range
0.05 < z < 0.55. We show that modifying the (g'-r'), m_r' and K-correction used
to define dwarf and giant selection do not alter the conclusion regarding the
presence of evolution. We parameterize the GDR evolution using a linear
function of redshift (GDR = alpha * z + beta) with a best fit slope of alpha =
0.88 +/- 0.15 and normalization beta = 0.44 +/- 0.03. Contrary to claims of a
large intrinsic scatter, we find that the GDR data can be fully accounted for
using observational errors alone. Consistently, we find no evidence for a
correlation between GDR and cluster mass (via Tx or weak lensing). Lastly, the
data suggest that the evolution of the GDR at z < 0.2 is driven primarily by
dry merging of the massive giant galaxies, which when considered with previous
results at higher redshift, suggests a change in the dominant mechanism that
mediates the GDR.Comment: 20 pages, 15 figures. Accepted to MNRA
Phosphorylation of Puma modulates its apoptotic function by regulating protein stability
Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death
Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates
Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent
HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope
This paper describes a new Heterodyne Array Receiver Programme (HARP) and
Auto-Correlation Spectral Imaging System (ACSIS) that have recently been
installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The
16-element focal-plane array receiver, operating in the submillimetre from 325
to 375 GHz, offers high (three-dimensional) mapping speeds, along with
significant improvements over single-detector counterparts in calibration and
image quality. Receiver temperatures are 120 K across the whole band and
system temperatures of 300K are reached routinely under good weather
conditions. The system includes a single-sideband filter so these are SSB
figures. Used in conjunction with ACSIS, the system can produce large-scale
maps rapidly, in one or more frequency settings, at high spatial and spectral
resolution. Fully-sampled maps of size 1 square degree can be observed in under
1 hour.
The scientific need for array receivers arises from the requirement for
programmes to study samples of objects of statistically significant size, in
large-scale unbiased surveys of galactic and extra-galactic regions. Along with
morphological information, the new spectral imaging system can be used to study
the physical and chemical properties of regions of interest. Its
three-dimensional imaging capabilities are critical for research into
turbulence and dynamics. In addition, HARP/ACSIS will provide highly
complementary science programmes to wide-field continuum studies, and produce
the essential preparatory work for submillimetre interferometers such as the
SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table
A 'third way' for football fandom research: Anthony Giddens and Structuration Theory
Although football fans actively discuss all of the 'big players' within their practice, the same cannot be said for sociologists of sport. Anthony Giddens is a world renowned intellectual and author of some of the most predominant sociological texts of the last millennium. He is the most frequently cited contemporary sociologist spanning all aspects of the social sciences, and yet his work is seldom referred to or used within the sociology of sport. In response to this and in reaction to calls from authors such as Williams to re-think football fandom, this article aims to explore the potential of Giddens 'Structuration Theory' (ST) for moving the sociology of sport closer towards meeting this end. It draws on in-depth qualitative interviews with thirty football fans. The findings of these and their implications are discussed in relation to the 'everyday' processes of fandom
- …