154 research outputs found
Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal Modulator and Is Not Required for the Virulence Functions of Bacterial Type III Effectors AvrRpt2 or AvrRpm1
Bacterial pathogens deliver type III effector proteins into the plant cell during infection. On susceptible (r) hosts, type III effectors can contribute to virulence. Some trigger the action of specific disease resistance (R) gene products. The activation of R proteins can occur indirectly via modification of a host target. Thus, at least some type III effectors are recognized at site(s) where they may act as virulence factors. These data indicate that a type III effector's host target might be required for both initiation of R function in resistant plants and pathogen virulence in susceptible plants. In Arabidopsis thaliana, RPM1-interacting protein 4 (RIN4) associates with both the Resistance to Pseudomonas syringae pv maculicola 1 (RPM1) and Resistance to P. syringae 2 (RPS2) disease resistance proteins. RIN4 is posttranslationally modified after delivery of the P. syringae type III effectors AvrRpm1, AvrB, or AvrRpt2 to plant cells. Thus, RIN4 may be a target for virulence functions of these type III effectors. We demonstrate that RIN4 is not the only host target for AvrRpm1 and AvrRpt2 in susceptible plants because its elimination does not diminish their virulence functions. In fact, RIN4 negatively regulates AvrRpt2 virulence function. RIN4 also negatively regulates inappropriate activation of both RPM1 and RPS2. Inappropriate activation of RPS2 is nonspecific disease resistance 1 (NDR1) independent, in contrast with the established requirement for NDR1 during AvrRpt2-dependent RPS2 activation. Thus, RIN4 acts either cooperatively, downstream, or independently of NDR1 to negatively regulate RPS2 in the absence of pathogen. We propose that many P. syringae type III effectors have more than one target in the host cell. We suggest that a limited set of these targets, perhaps only one, are associated with R proteins. Thus, whereas any pathogen virulence factor may have multiple targets, the perturbation of only one is necessary and sufficient for R activation
Direct involvement of leucine-rich repeats in assembling ligand-triggered receptor-coreceptor complexes
Receptor kinases with leucine-rich repeat (LRR) extracellular domains form the largest family of receptors in plants. In the few cases for which there is mechanistic information, ligand binding in the extracellular domain often triggers the recruitment of a LRR-coreceptor kinase. The current model proposes that this recruitment is mediated by their respective kinase domains. Here, we show that the extracellular LRR domain of BRI1-ASSOCIATED KINASE1 (BAK1), a coreceptor involved in the disparate processes of cell surface steroid signaling and immunity in plants, is critical for its association with specific ligand-binding LRR-containing receptors. The LRRs of BAK1 thus serve as a platform for the molecular assembly of signal-competent receptors. We propose that this mechanism represents a paradigm for LRR receptor activation in plants
Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns
Metazoans and plants use pattern recognition receptors (PRRs) to sense conserved microbial-associated molecular patterns (MAMPs) in the extracellular environment. In plants, the bacterial MAMPs flagellin and elongation factor Tu (EF-Tu) activate distinct, phylogenetically related cell surface pattern recognition receptors of the leucine-rich repeat receptor kinase (LRR-RK) family called FLS2 and EF-Tu receptor, respectively. BAK1 is an LRR-RK coreceptor for both FLS2 and EF-Tu receptor. BAK1 is also a coreceptor for the plant brassinosteroid (BR) receptor, the LRR-RK BRI1. Binding of BR to BRI1 primarily promotes cell elongation. Here, we tune the BR pathway response to establish how plant cells can generate functionally different cellular outputs in response to MAMPs and pathogens. We demonstrate that BR can act antagonistically or synergistically with responses to MAMPs. We further show that the synergistic activities of BRs on MAMP responses require BAK1. Our results highlight the importance of plant steroid homeostasis as a critical step in the establishment of plant immunity. We propose that tradeoffs associated with plasticity in the face of infection are layered atop plant steroid developmental programs
Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots
In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain hostâmicrobe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere
Effect of nearâbed turbulence on chronic detachment of epilithic biofilm: Experimental and modeling approaches.
The biomass dynamics of epilithic biofilm, a collective term for a complex microorganism community that grows on gravel bed rivers, was investigated by coupling experimental and numerical approaches focusing on epilithic biofilmâflow interactions. The experiment was conducted during 65 days in an artificial rough openâchannel flow, where filtered river water circulated at a constant discharge. To characterize the effect of nearâbed turbulence on the chronic detachment process in the dynamics of epilithic biofilm, local hydrodynamic conditions were measured by laser Doppler anemometry and turbulent boundary layer parameters inferred from doubleâaveraged quantities. Numerical simulations of the EB biomass dynamics were performed using three different models of chronic detachment based upon three different descriptors for the flow conditions: Discharge Q, friction velocity u*, and roughness Reynolds number k+. Comparisons of numerical simulation results with experimental data revealed chronic detachment to be better simulated by taking the roughness Reynolds number as the external physical variable forcing chronic detachment. Indeed, the loss of epilithic matter through the chronic detachment process is related not only to hydrodynamic conditions, but also to change in bottom roughness. This suggests that changes in the behavior and dimensions of river bed roughness must be considered when checking the dynamics of epilithic biofilm in running waters
A complex immune response to flagellin epitope variation in commensal communities
Immune systems restrict microbial pathogens by identifying ânon-selfâ molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition
The Arabidopsis Resistance-Like Gene SNC1 Is Activated by Mutations in SRFR1 and Contributes to Resistance to the Bacterial Effector AvrRps4
The SUPPRESSOR OF rps4-RLD1 (SRFR1) gene was identified based on enhanced AvrRps4-triggered resistance in the naturally susceptible Arabidopsis accession RLD. No other phenotypic effects were recorded, and the extent of SRFR1 involvement in regulating effector-triggered immunity was unknown. Here we show that mutations in SRFR1 in the accession Columbia-0 (Col-0) lead to severe stunting and constitutive expression of the defense gene PR1. These phenotypes were temperature-dependent. A cross between srfr1-1 (RLD background) and srfr1-4 (Col-0) showed that stunting was caused by a recessive locus in Col-0. Mapping and targeted crosses identified the Col-0-specific resistance gene SNC1 as the locus that causes stunting. SRFR1 was proposed to function as a transcriptional repressor, and SNC1 is indeed overexpressed in srfr1-4. Interestingly, co-regulated genes in the SNC1 cluster are also upregulated in the srfr1-4 snc1-11 double mutant, indicating that the overexpression of SNC1 is not a secondary effect of constitutive defense activation. In addition, a Col-0 RPS4 mutant showed full susceptibility to bacteria expressing avrRps4 at 24°C but not at 22°C, while RLD susceptibility was not temperature-dependent. The rps4-2 snc1-11 double mutant showed increased, but not full, susceptibility at 22°C, indicating that additional cross-talk between resistance pathways may exist. Intriguingly, when transiently expressed in Nicotiana benthamiana, SRFR1, RPS4 and SNC1 are in a common protein complex in a cytoplasmic microsomal compartment. Our results highlight SRFR1 as a convergence point in at least a subset of TIR-NBS-LRR protein-mediated immunity in Arabidopsis. Based on the cross-talk evident from our results, they also suggest that reports of constitutive resistance phenotypes in Col-0 need to consider the possible involvement of SNC1
- âŠ