89 research outputs found

    A Method to determine Partial Weight Enumerator for Linear Block Codes

    Get PDF
    In this paper we present a fast and efficient method to find partial weight enumerator (PWE) for binary linear block codes by using the error impulse technique and Monte Carlo method. This PWE can be used to compute an upper bound of the error probability for the soft decision maximum likelihood decoder (MLD). As application of this method we give partial weight enumerators and analytical performances of the BCH(130,66), BCH(103,47) and BCH(111,55) shortened codes; the first code is obtained by shortening the binary primitive BCH (255,191,17) code and the two other codes are obtained by shortening the binary primitive BCH(127,71,19) code. The weight distributions of these three codes are unknown at our knowledge.Comment: Computer Engineering and Intelligent Systems Vol 3, No.11, 201

    A dynamic study with side channel against An Identification Based Encryption

    Get PDF
    Recently, the side channel keeps the attention of researchers in theory of pairing, since, several studies have been done in this subject and all them have the aim in order to attack the cryptosystems of Identification Based Encryption (IBE) which are integrate into smart cards (more than 80% of those cryptosystems are based on a pairing). The great success and the remarkable development of the cryptography IBE in the recent years and the direct connection of this success to the ability of resistance against any kind of attack, especially the DPA and DFA attacks, leave us to browse saying all the studies of the DPA and DFA attacks applied to a pairing and we have observed that they have no great effect to attack the cryptosystems of IBE. That’s what we will see in this paper. In this work we will illuminate the effect of the DPA attack on a cryptosystems of IBE and we would see on what level we can arrive. Thus in the case where this attack can influence on those cryptosystems, we can present an appropriate counter measures to resist such attack. In the other part we will also propose a convenient counter-measure to defend the attack DFA when the embedding degree is eve

    Bitcoin Security with a Twisted Edwards Curve

    Get PDF
    International audienceThe security of the Bitcoin cryptocurrency system depends on the Koblitz curve secp256k1 combined with the digital signature ECDSA and the hash function SHA-256. In this paper, we show that the security of Bitcoin with ECDSA and secp256k1 is not optimal and present a detailed study of the efficiency of Bitcoin with the digital signature algorithm Ed25519 combined with the twisted Edwards curve CurveEd25519 and the hash function SHA-512. We show that Bitcoin is more secure and more efficient with the digital signature algorithm Ed25519 and the twisted Edwards curve CurveEd25519. Subject Classifications: 94A6
    • …
    corecore