754 research outputs found
Solid state synthesis and X-ray diffraction characterization of Pu 3+(1-2x)Pu4+xCa2+xPO4
In the framework of the 1991 French law concerning nuclear waste management, several studies have been carried out in order to elaborate crystalline matrices for specific immobilization of the radionuclides. In the case of high level and long-lived minor actinides (Np, Am and Cm), which are high level and long-lived radioactive elements, monazite, a light rare earth (Re) orthophosphate with general formula Re3+PO4 (with Re = La to Gd), has been proposed as a host matrix, thanks to its high resistance to self irradiation and its low solubility. Monazite crystallizes in the monoclinic space group P21/n. In this structure, trivalent cations (Re3+) could be substituted by an equivalent amount of bivalent (A2+) and tetravalent (B4+) cations, allowing the simultaneous incorporation of Am3+, Cm3+ and Np4+. According to Podor's work1, the limit of a tetravalent element incorporation in monazite is related to its size in the ninefold coordination (RIX)
Exploration of the Hydrogen Sulfide−Germanium Sulfide System
In the present work, the (x)H2S + (1−x)GeS2 system has been systematically investigated to determine the incorporation of hydrogen into the tetrahedral germanium sulfide network. Reactions between gaseous H2S and glassy-GeS2 have been explored over a range of temperatures and pressures. Reactions for shorter times and lower temperatures (ambient through 250 °C) produced the protonated thiogermanic acid H4Ge4S10 with an adamantane-like microstructure. In contrast, longer reaction times produced the unprotonated low-temperature three-dimensional α-GeS2 crystal structure. At higher temperatures (750 °C), sublimation reactions produced weakly protonated amorphous materials in the form of spherical particles (100 nm to a few μm). Structural characterizations of the obtained amorphous and crystalline materials have been performed using IR and Raman spectroscopies, thermogravimetric analysis, ac impedance spectroscopy, and SEM. Thermal mass loss measurements and quantitative IR of the S−H stretching region 2500 cm-1 were used to determine the amount of hydrogen incorporated into the GeS2 network
Alzheimers Dement
This study aims to examine whether physical activity moderates the association between biomarkers of brain pathologies and dementia risk. From the Memento cohort, we analyzed 1044 patients with mild cognitive impairment, aged 60 and older. Self-reported physical activity was assessed using the International Physical Activity Questionnaire. Biomarkers of brain pathologies comprised medial temporal lobe atrophy (MTA), white matter lesions, and plasma amyloid beta (Aβ)42/40 and phosphorylated tau181. Association between physical activity and risk of developing dementia over 5 years of follow-up, and interactions with biomarkers of brain pathologies were tested. Physical activity moderated the association between MTA and plasma Aβ42/40 level and increased dementia risk. Compared to participants with low physical activity, associations of both MTA and plasma Aβ42/40 on dementia risk were attenuated in participants with high physical activity. Although reverse causality cannot be excluded, this work suggests that physical activity may contribute to cognitive reserve. Physical activity is an interesting modifiable target for dementia prevention. Physical activity may moderate the impact of brain pathology on dementia risk. Medial temporal lobe atrophy and plasma amyloid beta 42/40 ratio were associated with increased dementia risk especially in those with low level of physical activity
Interaction of language, auditory and memory brain networks in auditory verbal hallucinations
Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
Measurement of the ratios of branching fractions and
The ratios of branching fractions
and are measured, assuming isospin symmetry, using a
sample of proton-proton collision data corresponding to 3.0 fb of
integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The
tau lepton is identified in the decay mode
. The measured values are
and
, where the first uncertainty is
statistical and the second is systematic. The correlation between these
measurements is . Results are consistent with the current average
of these quantities and are at a combined 1.9 standard deviations from the
predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb
public pages
Determination of quantum numbers for several excited charmed mesons observed in B- -> D*(+)pi(-) pi(-) decays
A four-body amplitude analysis of the B − → D * + π − π − decay is performed, where fractions and relative phases of the various resonances contributing to the decay are measured. Several quasi-model-independent analyses are performed aimed at searching for the presence of new states and establishing the quantum numbers of previously observed charmed meson resonances. In particular the resonance parameters and quantum numbers are determined for the D 1 ( 2420 ) , D 1 ( 2430 ) , D 0 ( 2550 ) , D ∗ 1 ( 2600 ) , D 2 ( 2740 ) and D ∗ 3 ( 2750 ) states. The mixing between the D 1 ( 2420 ) and D 1 ( 2430 ) resonances is studied and the mixing parameters are measured. The dataset corresponds to an integrated luminosity of 4.7 fb − 1 , collected in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV with the LHCb detector
Updated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays
A search for decay-time-dependent charge-parity (CP) asymmetry in D0 \u2192 K+ K 12 and D0 \u2192 \u3c0+ \u3c0 12 decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb^ 121. The D0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D0 and anti-D0 mesons are determined to be A_\u393(K+ K 12) = ( 124.3 \ub1 3.6 \ub1 0.5)
7 10^ 124 and A_\u393(\u3c0+ \u3c0 12) = (2.2 \ub1 7.0 \ub1 0.8)
7 10^ 124 , where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A_\u393(K+ K 12) = ( 124.4 \ub1 2.3 \ub1 0.6)
7 10^ 124 and A_\u393(\u3c0+ \u3c0 12) = (2.5 \ub1 4.3 \ub1 0.7)
7 10^ 124
- …