19 research outputs found

    Integrative approach for differentially overexpressed genes in gastric cancer by combining large-scale gene expression profiling and network analysis

    Get PDF
    Gene expression profiling is a valuable tool for identifying differentially expressed genes in studies of disease subtype and patient outcome for various cancers. However, it remains difficult to assign biological significance to the vast number of genes. There is an increasing awareness of gene expression profile as an important part of the contextual molecular network at play in complex biological processes such as cancer initiation and progression. This study analysed the transcriptional profiles commonly activated at different stages of gastric cancers using an integrated approach combining gene expression profiling of 222 human tissues and gene regulatory dynamic mapping. We focused on an inferred core network with CDKN1A (p21WAF1/CIP1) as the hub, and extracted seven candidates for gastric carcinogenesis (MMP7, SPARC, SOD2, INHBA, IGFBP7, NEK6, LUM). They were classified into two groups based on the correlation between expression level and stage. The seven genes were commonly activated and their expression levels tended to increase as disease progressed. NEK6 and INHBA are particularly promising candidate genes overexpressed at the protein level, as confirmed by immunohistochemistry and western blotting. This integrated approach could help to identify candidate players in gastric carcinogenesis and progression. These genes are potential markers of gastric cancer regardless of stage

    Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2

    Get PDF
    The protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved and activated by trypsin. We investigated the expression of PAR-2 and the role of trypsin in cell proliferation in human colon cancer cell lines. A total of 10 cell lines were tested for expression of PAR-2 mRNA by Northern blot and RT-PCR. PAR-2 protein was detected by immunofluorescence. Trypsin and the peptide agonist SLIGKV (AP2) were tested for their ability to induce calcium mobilization and to promote cell proliferation on serum-deprived cells. PAR-2 mRNA was detected by Northern blot analysis in 6 out of 10 cell lines [HT-29, Cl.19A, Caco-2, SW480, HCT-8 and T84]. Other cell lines expressed low levels of transcripts, which were detected only by RT-PCR. Further results were obtained with HT-29 cells: (1) PAR-2 protein is expressed at the cell surface; (2) an increase in intracellular calcium concentration was observed upon trypsin (1–100 nM) or AP2 (10–100 μM) challenges; (3) cells grown in serum-deprived media supplemented with trypsin (0.1–1 nM) or AP2 (1–300 μM) exhibited important mitogenic responses (3-fold increase of cell number). Proliferative effects of trypsin or AP2 were also observed in other cell lines expressing PAR-2. These data show that subnanomolar concentrations of trypsin, acting at PAR-2, promoted the proliferation of human colon cancer cells. The results of this study indicate that trypsin could be considered as a growth factor and unravel a new mechanism whereby serine proteases control colon tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Protease Activated Receptor Signaling Is Required for African Trypanosome Traversal of Human Brain Microvascular Endothelial Cells

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, occurs when single-cell trypanosome protozoan parasites spread from the blood to brain over the blood-brain barrier (BBB). This barrier is composed of brain microvascular endothelial cells (BMECs) especially designed to keep pathogens out. Safe drugs for treating sleeping sickness are lacking and alternative treatments are urgently required. Using our human BMEC BBB model, we previously found that a parasite protease, brucipain, induced calcium activation signals that allowed this barrier to open up to parasite crossing. Because human BMECs express protease-activated receptors (PARs) that trigger calcium signals in BMECs, we hypothesized a functional link between parasite brucipain and BMEC PARs. Utilizing RNA interference to block the production of one type of PAR called PAR-2, we hindered the ability of trypanosomes to both open up and cross human BMECs. Using gene-profiling methods to interrogate candidate BMEC pathways specifically triggered by brucipain, several pathways that potentially link brain inflammatory processes were identified, a finding congruent with the known role of PAR-2 as a mediator of inflammation. Overall, our data support a role for brucipain and BMEC PARs in trypanosome BBB transmigration, and as potential triggers for brain inflammation associated with the disease

    Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation

    Full text link

    Chronic hypoxia induces constitutive p38 mitogen-activated protein kinase activity that correlates with enhanced cellular proliferation in fibroblasts from rat pulmonary but not systemic arteries

    No full text
    Pulmonary hypertension occurs commonly in patients with chronic hypoxic lung disease and is characterized by the remodeling of the pulmonary artery walls. The molecular mechanisms underlying such remodeling are unknown but we have recently shown that the stress-activated (Jnk and p38) mitogen-activated protein (MAP) kinases are activated in pulmonary artery fibroblasts following acute hypoxia. We now show that Erk and p38 MAP kinases are constitutively activated in fibroblasts derived from the remodeled pulmonary, but not the systemic circulation from rats exposed to chronically hypoxic conditions. Moreover, we find that such fibroblasts show sustained enhanced proliferative capacities relative to pulmonary artery fibroblasts derived from normoxic rats or to aortic fibroblasts from either normoxic or hypoxic rats. Finally, abrogation of p38, but not Erk MAP kinase activity by use of specific inhibitors, prevents the enhanced proliferative capacity exhibited by pulmonary artery fibroblasts. Taken together, these data suggest that enhanced p38 MAP kinase activity provides a molecular mechanism to explain the proliferation of pulmonary artery fibroblasts required for remodeling of the pulmonary vasculature.<p></p&gt
    corecore