2 research outputs found

    Low volume sampling device for mass spectrometry analysis of gas formation in nickel-metalhydride (NiMH) batteries

    No full text
    Rechargeable nickel-metalhydride (NiMH) batteries have major advantages with respect to environmental friendliness and energy density compared to other battery systems. Research on thermodynamics and reaction kinetics is required to study the behaviour of these batteries, especially under severe operating conditions such as overcharging and (over)discharging. During these processes several reactions take place resulting in the formation of oxygen and hydrogen gas. Hence, the recombination processes should be well controlled to guarantee that the partial oxygen and hydrogen pressure inside the battery are kept low. Mass spectrometry is one of the analytical techniques capable of measuring the composition of gases released inside the battery during the charge and discharge processes. However, the sample gas needs to be withdrawn from the battery during the experiment. The gas consumption must be kept to a minimum otherwise the equilibrium inside the battery will be disturbed. A bench-top quadrupole mass spectrometer with a standard capillary by-pass inlet cannot be used for this purpose as its gas consumption is in the 1-10 ml/min range. In this paper, a new gas inlet device is presented that reduces gas consumption to a value <50 μl/h. The use of a capillary by-pass splitter and a discontinuous sampling procedure allow mass spectrometry to be used as a gas analysis tool in many applications in which small amounts of sample gas are involved. Experiments with standard AA-size NiMH batteries show that hydrogen release dominates during (over)charging at increased charging rates. Beside mass spectrometry, evolved gases are also analysed using Raman spectroscopy. Although some differences are observed, the results of similar experiments show a good agreement

    In situ Raman analysis of gas formation in NiMH batteries

    No full text
    In this paper Raman spectrometry is introduced in the field of sealed battery research for in situ gas-phase analysis and for long-term measurements. For this purpose, a new method was successfully applied in order to model battery behavior without interfering with operation. It is shown that oxygen, hydrogen, and nitrogen are responsible for the pressure increase that occurs during overcharging. The relative contribution of the different gases depends on the current imposed on the battery as well as the operating temperature. Reproducible and stable signals could be obtained even under severe conditions such as high pressure and elevated temperature. Oxygen and hydrogen are produced in side reactions taking place during battery operation. However, as nitrogen is unlikely to be a reacting gas inside the battery, the change in its partial pressure can be attributed to electrode expansion and a change in the electrolyte volume
    corecore