1,169 research outputs found
Evaluation results of a 3D virtual environment for internet-accessible physics experiments
In the science of physics the interrelation of physical theory, model and experiement is hard to comprehend, therefore group learning becomes more important. This fact, combined with the opportunity to work on practical experiences over distance in a collaboratively way, has raised worldwide the interest of creating new learning environments based on 3D virtual worlds.This paper outlines an evaluation that was performed to determine whether the addition of collaborative virtual learning environment (CVLE) to an internet-accessible physics experiment (iLab) would improve learning experience. We wanted to assess if the developed CLVE helps participants to achieve a better understanding of physics phenomena. Within this CLVE avatars represent learners and they are able to communicate and collaborate in a way similar to real life in order to perform physics experiments using the TEAL simulation toolkit. One of the major findings of this evaluation indicates that the reconsideration of design and additional items at the 3D visualization could further improve the learning process in the CLVE in a more effective way
Carbohydrate reserves in grapevine (Vitis vinifera L. 'Chasselas'): the influence of the leaf to fruit ratio
Seasonal dynamics of total non-structural carbohydrates (TNC) in relation to the leaf-fruit ratio were measured over five years at different grapevine phenological stages in one- and two-year-old canes, trunks and roots of the cultivar 'Chasselas' (Vitis vinifera L.). Carbohydrates were mainly stored as starch in different parts of the grapevine during the growing season. Soluble carbohydrates represented only a small part (< 7 % of dry weight, DW) of the TNC. In the roots and trunks, the starch content fluctuated during the growing season, reaching the lowest values between budbreak and flowering depending on the year, and the highest values between harvest and leaf fall. The soluble sugar content increased in the trunks and the two-year-old canes during the winter period with the decrease in temperatures. A negative correlation was established between the average air temperature recorded during the seven days before sample collection for carbohydrate analysis, and soluble carbohydrate content in the trunks and two-year-old canes. The leaffruit ratio (source-sink), expressed by the “light-exposed leaf area∙kg-1 fruit”, not only substantially influenced the soluble sugar content in berries but also the starch and TNC concentrations in the trunks and roots at harvest. Higher leaf-fruit ratios resulted in increased starch and TNC concentrations in the trunks and roots, which attained the maximum values when the leaf-fruit ratio neared 2.0 m2 of light-exposed leaf area∙kg-1 fruit. Canopy height and leaf area had no predominant influence on the soluble sugars, starch contents, or TNC in the permanent vine parts.
Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation
We describe a method to measure the magnetic field orientation of coronal
mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles,
Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are
produced by a radio source occulted by a moving flux rope depending on its
orientation. These curves are consistent with the Helios observations,
providing evidence for the flux-rope geometry of CMEs. Many background radio
sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope
that the magnetic field orientation and helicity of the flux rope can be
determined 2-3 days before it reaches Earth, which is of crucial importance for
space weather forecasting. An FR calculation based on global
magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows
that FR mapping can also resolve a CME geometry curved back to the Sun. We
discuss implementation of the method using data from the Mileura Widefield
Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.
Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes
Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950–1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.National Institutes of Health (U.S.). Center for Nanotechnology Excellence (Grant U54-CA119349-04)National Institutes of Health (U.S.). Center for Nanotechnology Excellence (Grant U54-CA151884)David H. Koch Institute for Integrative Cancer Research at MIT. Frontier Research Program (Kathy and Curt Marble Cancer Research Fund)National Institute of Environmental Health Sciences (Grant P30-ES002109)Marie D. & Pierre Casimir-Lambert FundAmar G. Bose Research Gran
Intermittency and the passive nature of the magnitude of the magnetic field
It is shown that the statistical properties of the magnitude of the magnetic
field in turbulent electrically conducting media resemble, in the inertial
range, those of passive scalars in fully developed three-dimensional fluid
turbulence. This conclusion, suggested by the data from Advanced Composition
Explorer, is supported by a brief analysis of the appropriate
magnetohydrodynamic equations
Recommended from our members
Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations
The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles
Recommended from our members
Seasonality of submesoscale flows in the ocean surface boundary layer
A signature of submesoscale flows in the upper ocean is skewness in the distribution of relative vorticity. Expected to result for high Rossby-number flows, such skewness has implications for mixing, dissipation and stratification within the upper ocean. An array of moorings deployed in the Northeast Atlantic for one year as part of the OSMOSIS experiment reveals that relative vorticity is positively skewed during winter even though the scale of the Rossby number is less than 0.5. Furthermore, this skewness is reduced to zero during spring and autumn. There is also evidence of modest seasonal variations in the gradient Rossby number. The proposed mechanism by which relative vorticity is skewed is that the ratio of lateral to vertical buoyancy gradients, as summarized by the inverse gradient Richardson number, restricts its range during winter but less so at other times of the year. These results support recent observations and model simulations suggesting the upper ocean is host to a seasonal cycle in submesoscale turbulence
Graduate Students as Academic Writers: Writing Anxiety, Self-Efficacy, and Emotional Intelligence
Researchers interested in psychological factors affecting writers in higher-education institutions, or academic writers, are concerned with internal variables affecting writing productivity; however few empirical studies explore these factors with samples of students who are in the process of earning master’s or doctoral degrees (i.e., graduate students). In this study, we examined writing anxiety, self-efficacy, and emotional intelligence in a sample of graduate students at a large, research-intensive university in the United States. Using a survey, we collected measures on these variables in addition to demographic information from the participants. We then used the measures to descriptively compare groups of students with similar characteristics and to run three regression models to identify which variables best predicted writing anxiety. Our findings indicate self-efficacy is a statistically significant and large predictor of writing anxiety while emotional intelligence (EI) is not, though descriptive data showed moderate effects between EI and first language (i.e., whether or not a student reported English as a first language). In the presence of self-efficacy, gender remained a significant predictor of writing anxiety, while first language did not. We discuss implications for future research and practice focused on helping graduate student academic writers succeed
Sometimes you have to take the person and show them how : adapting behavioral activation for peer recovery specialist-delivery to improve methadone treatment retention
BACKGROUND: Despite efficacy of medication for opioid use disorder, low-income, ethno-racial minoritized populations often experience poor opioid use disorder treatment outcomes. Peer recovery specialists, individuals with lived experience of substance use and recovery, are well-positioned to engage hard-to-reach patients in treatment for opioid use disorder. Traditionally, peer recovery specialists have focused on bridging to care rather than delivering interventions. This study builds on research in other low-resource contexts that has explored peer delivery of evidence-based interventions, such as behavioral activation, to expand access to care.
METHODS: We sought feedback on the feasibility and acceptability of a peer recovery specialist-delivered behavioral activation intervention supporting retention in methadone treatment by increasing positive reinforcement. We recruited patients and staff at a community-based methadone treatment center and peer recovery specialist working across Baltimore City, Maryland, USA. Semi-structured interviews and focus groups inquired about the feasibility and acceptability of behavioral activation, recommendations for adaptation, and acceptability of working with a peer alongside methadone treatment.
RESULTS: Participants (N = 32) shared that peer recovery specialist-delivered behavioral activation could be feasible and acceptable with adaptations. They described common challenges associated with unstructured time, for which behavioral activation could be particularly relevant. Participants provided examples of how a peer-delivered intervention could fit well in the context of methadone treatment, emphasizing the importance of flexibility and specific peer qualities.
CONCLUSIONS: Improving medication for opioid use disorder outcomes is a national priority that must be met with cost-effective, sustainable strategies to support individuals in treatment. Findings will guide adaptation of a peer recovery specialist-delivered behavioral activation intervention to improve methadone treatment retention for underserved, ethno-racial minoritized individuals living with opioid use disorder
- …