5 research outputs found

    GDF15 in the Physiological Human Pregnancy: Novel Data and A Systematic Review

    No full text
    The involvement of GDF15 protein in modulating the processes of cellular migration and adhesion, tissue remodeling and inflammatory responses suggests that this factor may be of high importance for pregnancy establishment and its further maintenance. Analyzing pregnancy-associated dynamics of the factor confers a valuable addition to the case-control studies and can help advance our understanding of the fundamentals of the factor’s involvement in pregnancy. However, as seen from the systematic literature review presented in this paper, current data set significant questions on roles of GDF15 in pregnancy. Additionally, a significant controversy is seen in the literature regarding the gestational dynamics of GDF15. Thus, we tried to contribute to the field by assessing the dynamics of serum GDF15 protein in the course of the physiological human pregnancy. We found that serum maternal GDF15 levels increase by almost two orders of magnitude with progression of pregnancy from the mid-first trimester towards the early second trimester and then towards the term. These data were further compared with those found in the literature

    Low toxic maghemite nanoparticles for theranostic applications

    No full text
    Elena A Kuchma,* Peter V Zolotukhin, Anna A Belanova, Mikhail A Soldatov, Tatiana A Lastovina, Stanislav P Kubrin, Anatoliy V Nikolsky, Lidia I Mirmikova, Alexander V Soldatov* The Smart Materials Research Center, Southern Federal University of Russia, Rostov-on-Don, Russia *These authors contributed equally to this work Background: Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine.Methods: Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing).Results: TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD was ~16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus.Conclusion: Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. Keywords: magnetic nanoparticles, SPIONs, maghemite, theranostics in oncology, toxicity, RO

    The cell envelope glycoconjugates of Mycobacterium tuberculosis

    No full text
    corecore