2,688 research outputs found
All we need is the candidate’s face: the irrelevance of information about political coalition affiliation and campaign promises
Recent research has indicated that judgments of competence based on very short exposure to political candidates' faces reliably predict electoral success. An unexplored question is whether presenting written information of the kind to which voters are typically exposed during an election alongside candidates' faces affects competence judgments. We conducted three studies using photographs of 16 pairs of competing politicians in 16 medium-sized towns of northeast Italy as stimuli. Study 1 confirmed the external validity of earlier research in which participants were exposed to candidates' faces without providing any other information. Study 2a showed that competence judgments were not subject to in-group favoritism: candidates' faces were presented alongside information about the political coalition to which they belonged (center left; center right) to participants who declared a left or right political orientation. Finally, Study 2c compared the competence inferences made in Study 1 (face-only condition) with those of Study 2a (face plus political coalition label) and with new inferences (Study 2b) based on candidates' faces plus information about campaign promises (greater equality; lower taxes). The results showed that automatic competence inferences are not substantially modified when relevant written information is presented alongside candidates' faces
Equilibrium random-field Ising critical scattering in the antiferromagnet Fe(0.93)Zn(0.07)F2
It has long been believed that equilibrium random-field Ising model (RFIM)
critical scattering studies are not feasible in dilute antiferromagnets close
to and below Tc(H) because of severe non-equilibrium effects. The high magnetic
concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide
equilibrium behavior. We have employed scaling techniques to extract the
universal equilibrium scattering line shape, critical exponents nu = 0.87 +-
0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.Comment: 4 pages, 1 figure, minor revision
Genome-wide linkage scan for loci associated with epilepsy in Belgian shepherd dogs.
BackgroundIdiopathic epilepsy in the Belgian shepherd dog is known to have a substantial genetic component. The objective of this study was to identify genomic regions associated with the expression of generalized seizures in the Belgian Tervuren and Sheepdog.ResultsDNA from 366 dogs, of which 74 were classified as epileptic, representing two extended families were subjected to a genome-wide linkage scan using 410 microsatellite markers yielding informative coverage averaging 5.95 +/- 0.21 Mb. Though previous studies based on pedigree analyses proposed a major gene of influence, the present study demonstrated the trait to be highly polygenic. Studies of complex disorders in humans indicate that a liberal composite evaluation of genetic linkage is needed to identify underlying quantitative trait loci (QTLs). Four chromosomes yielded tentative linkage based upon LOD scores in excess of 1.0. Possible QTLs within these regions were supported also by analyses of multipoint linkage, allele frequency, TDT, and transmission of haplotype blocks.ConclusionsTaken together the data tentatively indicate six QTLs, three on CFA 2, and one on each of CFA 6, 12, and 37, that support fine mapping for mutations associated with epilepsy in the Belgian shepherd. The study also underscores the complexity of genomic linkage studies for polygenic disorders
Two-loop Functional Renormalization Group of the Random Field and Random Anisotropy O(N) Models
We study by the perturbative Functional Renormalization Group (FRG) the
Random Field and Random Anisotropy O(N) models near , the lower critical
dimension of ferromagnetism. The long-distance physics is controlled by
zero-temperature fixed points at which the renormalized effective action is
nonanalytic. We obtain the beta functions at 2-loop order, showing that despite
the nonanalytic character of the renormalized effective action, the theory is
perturbatively renormalizable at this order. The physical results obtained at
2-loop level, most notably concerning the breakdown of dimensional reduction at
the critical point and the stability of quasi-long range order in , are
shown to fit into the picture predicted by our recent non-perturbative FRG
approach.Comment: 19 pages, 20 figures. Minor correction
Random field spin models beyond one loop: a mechanism for decreasing the lower critical dimension
The functional RG for the random field and random anisotropy O(N)
sigma-models is studied to two loop. The ferromagnetic/disordered (F/D)
transition fixed point is found to next order in d=4+epsilon for N > N_c
(N_c=2.8347408 for random field, N_c=9.44121 for random anisotropy). For N <
N_c the lower critical dimension plunges below d=4: we find two fixed points,
one describing the quasi-ordered phase, the other is novel and describes the
F/D transition. The lower critical dimension can be obtained in an
(N_c-N)-expansion. The theory is also analyzed at large N and a glassy regime
is found.Comment: 4 pages, 5 figure
Structural Geology of the Central San Juan Islands, Northwest Washington
Within the Late Cretaceous San Juan thrust system, northwest Washington, tectonically juxtaposed melange separates the relatively unmetamorphosed, arc-affinity Fidalgo Complex and the high pressure-low temperature, MORB-affmity Ocean Floor terrane. Structural analysis. X-ray diffraction, and fault-slip analysis are used to constrain the relative timing, kinematics, and pressure-temperature conditions of postfabric ductile and brittle deformation in the Fidalgo Complex, Ocean Floor, and melange. Structural analysis of the melange, Fidalgo Complex, and Ocean Floor terranes help to constrain the tectonic development of the structurally highest terranes in the San Juan thrust system and provide insight into the mechanisms required for uplift of high-pressure terranes in accretionary wedge settings.
The Fidalgo Complex and Ocean Floor terranes have experienced multiple episodes of both ductile and brittle deformation. The intensity of ductile deformation is different in each terrane with ductile deformation characteristic to the Ocean Floor terrane and not the Fidalgo Complex. Folds of bedding and the regional fabric in the Ocean Floor are crosscut by a sequence of brittle faults that include reverse faults followed by extension veins, normal faults, and lastly, strike-slip faults. Kinematic axes from reverse faults show consistent north-south shortening and subvertical extension. Normal faults are consistent with subvertical shortening and average north-south extension. Kinematics of strike-slip faults are scattered and could not be resolved at the scale of the study area. The timing and kinematics of brittle deformation are found to be consistent across the Ocean Floor and Fidalgo Complex and with recent studies in the Lopez Structural Complex and eastern San Juan Islands (Gillaspy, 2005; Lamb, 2000). However, scattered kinematic directions and inconsistent structures are common to each stage of faulting in the central San Juan Islands. Stress inversion of strike-slip data is in agreement with calculated strain axes, but suggests intermixing of structural stages due to poor controls on crosscutting relations.
Scattered kinematics observed in all stages of brittle faulting and inconsistent structures in the strike-slip stage are not simply restored or explained by later block rotations or folding. Examination of the assumptions inherent to the calculation of kinematic axes and stress inversions implies that homogeneous stress and independent slip may not be valid assumptions for fault-slip data in the San Juan Islands.
The preservation of the HP-LT mineral aragonite, identified by X-ray diffraction, in veins associated with reverse faults and extensional structures constrains deformation within the Ocean Floor terrane to \u3e20km and ~200°C. Strike-slip faults do not contain aragonite. Blocks within the melange contain aragonite-bearing structures but are derived from the Ocean Floor terrane. The Fidalgo Complex lacks veins with HP-LT mineralogy. The structures and mineralogy of the Fidalgo Complex and Ocean Floor terranes and melange indicate that brittle deformation was active at various depths throughout an accretionary prism. The character of meter-scale brittle deformation, pressure-temperature conditions, and presence of melange at the Ocean Floor-Fidalgo Complex terrane boundary are compatible with observations in the Coast Ranges, California and in western Baja California, Mexico. Therefore, it is possible that similar mechanisms of uplift, related to oblique subduction and orogen-parallel extension, affected the Ocean Floor terrane and Fidalgo Complex. The Buck Bay fault and faults bounding the melange zones are possibly normal faults related to uplift of the Ocean Floor terrane and its juxtaposition with the Fidalgo Complex
In-flight calibration of the INTEGRAL/IBIS mask
Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software
version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS
imaging procedure, leading to an improvement of the sensitivity around bright
sources up to a factor of 7. This module excludes in the deconvolution process
the IBIS/ISGRI detector pixels corresponding to the projection of a bright
source through mask elements affected by some defects. These defects are most
likely associated with screws and glue fixing the IBIS mask to its support.
Following these major improvements introduced in OSA 9, a second order
correction is still required to further remove the residual noise, now at a
level of 0.2-1% of the brightest source in the field of view. In order to
improve our knowledge of the IBIS mask transparency, a calibration campaign has
been carried out during 2010-2012. We present here the analysis of these data,
together with archival observations of the Crab and Cyg X-1, that allowed us to
build a composite image of the mask defects and to investigate the origin of
the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able
to point out a simple modification of the ISGRI analysis software that allows
to significantly improve the quality of the images in which bright sources are
detected at the edge of the field of view. Moreover, a refinement of the area
excluded by the ghost busters module is considered, and preliminary results
show improvements to be further tested. Finally, this study indicates further
directions to be investigated for improving the ISGRI sensitivity, such as
taking into account the thickness of the screws in the mask model or studying
the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of
the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October
15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds.
A. Goldwurm, F. Lebrun and C. Winkler,
(http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4
figures, see the PoS website for the full resolution versio
First-order phase transition in a 2D random-field Ising model with conflicting dynamics
The effects of locally random magnetic fields are considered in a
nonequilibrium Ising model defined on a square lattice with nearest-neighbors
interactions. In order to generate the random magnetic fields, we have
considered random variables that change randomly with time according to
a double-gaussian probability distribution, which consists of two single
gaussian distributions, centered at and , with the same width
. This distribution is very general, and can recover in appropriate
limits the bimodal distribution () and the single gaussian one
(). We performed Monte Carlo simulations in lattices with linear sizes in
the range . The system exhibits ferromagnetic and paramagnetic
steady states. Our results suggest the occurence of first-order phase
transitions between the above-mentioned phases at low temperatures and large
random-field intensities , for some small values of the width .
By means of finite size scaling, we estimate the critical exponents in the
low-field region, where we have continuous phase transitions. In addition, we
show a sketch of the phase diagram of the model for some values of .Comment: 13 pages, 9 figures, accepted for publication in JSTA
Local Structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies
The combined local structure techniques, extended x-ray absorption fine
structure (EXAFS) and neutron pair distribution function analysis, have been
used for temperatures 4 <= T <= 330 K to rule out a large Jahn-Teller (JT)
distortion of the Co-O bond in La1-xSrxCoO3 for a significant fraction of Co
sites (x <= 0.35), indicating few, if any, JT-active, singly occupied e_g Co
sites exist.Comment: 5 page
- …