502 research outputs found
Polarization of Broad Absorption Line QSOs I. A Spectropolarimetric Atlas
We present a spectropolarimetric survey of 36 broad absorption line
quasi-stellar objects (BAL QSOs). The continuum, absorption trough, and
emission line polarization of BAL QSOs yield clues about their structure. We
confirm that BAL QSOs are in general more highly polarized than non-BAL QSOs,
consistent with a more equatorial viewing direction for the former than the
latter. We have identified two new highly-polarized QSOs in our sample
(1232+1325 and 1333+2840). The polarization rises weakly to the blue in most
objects, perhaps due to scattering and absorption by dust particles. We find
that a polarization increase in the BAL troughs is a general property of
polarized BAL QSOs, indicating an excess of scattered light relative to direct
light, and consistent with the unification of BAL QSOs and non-BAL QSOs. We
have also discovered evidence of resonantly scattered photons in the red wing
of the C IV broad emission lines of a few objects. In most cases, the broad
emission lines have lower polarization and a different position angle than the
continuum. The polarization characteristics of low-ionization BAL QSOs are
similar to those of high-ionization BAL QSOs, suggesting a similar BAL wind
geometry.Comment: 39 pages, 6 figures (20 .gif files), accepted for publication in The
Astrophysical Journal Supplement
POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL
As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument
A "superstorm": When moral panic and new risk discourses converge in the media
This is an Author's Accepted Manuscript of an article published in Health, Risk and Society, 15(6), 681-698, 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13698575.2013.851180.There has been a proliferation of risk discourses in recent decades but studies of these have been polarised, drawing either on moral panic or new risk frameworks to analyse journalistic discourses. This article opens the theoretical possibility that the two may co-exist and converge in the same scare. I do this by bringing together more recent developments in moral panic thesis, with new risk theory and the concept of media logic. I then apply this theoretical approach to an empirical analysis of how and with what consequences moral panic and new risk type discourses converged in the editorials of four newspaper campaigns against GM food policy in Britain in the late 1990s. The article analyses 112 editorials published between January 1998 and December 2000, supplemented with news stories where these were needed for contextual clarity. This analysis shows that not only did this novel food generate intense media and public reactions; these developed in the absence of the type of concrete details journalists usually look for in risk stories. Media logic is important in understanding how journalists were able to engage and hence how a major scare could be constructed around convergent moral panic and new risk type discourses. The result was a media âsuperstormâ of sustained coverage in which both types of discourse converged in highly emotive mutually reinforcing ways that resonated in a highly sensitised context. The consequence was acute anxiety, social volatility and the potential for the disruption of policy and social change
Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet
MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers for the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD
Deviations from the Local Hubble Flow. I. The Tip of the Red Giant Branch as a Distance Indicator
The properties of the velocity field in the local volume (cz < 550 km/s) have
been difficult to constrain due to a lack of a consistent set of galaxy
distances. The sparse observations available to date suggest a remarkably quiet
flow, with little deviation from a pure Hubble law. However, velocity field
models based on the distribution of galaxies in the 1.2 Jy IRAS redshift
survey, predict a quadrupolar flow pattern locally with strong infall at the
poles of the local Supergalactic plane. We probe this velocity field and begin
to establish a consistent set of galactic distances. We have obtained images of
nearby galaxies in the I and V band from the W.M. Keck Observatory and in F814W
and F555W filters from the Hubble Space Telescope. Where these galaxies are
well resolved into stars we may use the Tip of the Red Giant Branch (TRGB) as a
distance indicator. Using a maximum likelihood analysis to quantitatively
measure the I magnitude of the TRGB we determine precise distances to seven
nearby galaxies: Leo I, Sextans B, NGC 1313, NGC 3109, UGC 03755, UGC 06456,
and UGC 07577.Comment: AJ in Press, 54 pages, 30 figures, typos corrected, references added,
postscript version with high resolution figures available at
ftp://deep.berkeley.edu/pub/trgb/trgb.p
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51--1.70
micron), fiber-fed, multi-object (300 fibers), high resolution (R =
lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point
Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~
10^5 red giant stars that systematically sampled all Milky Way populations
(bulge, disk, and halo) to study the Galaxy's chemical and kinematical history.
It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014
using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New
Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV,
as well as a second spectrograph, a close copy of the first, operating at the
2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several
fiber-fed, multi-object, high resolution spectrographs have been built for
visual wavelength spectroscopy, the APOGEE spectrograph is one of the first
such instruments built for observations in the near-infrared. The instrument's
successful development was enabled by several key innovations, including a
"gang connector" to allow simultaneous connections of 300 fibers; hermetically
sealed feedthroughs to allow fibers to pass through the cryostat wall
continuously; the first cryogenically deployed mosaic volume phase holographic
grating; and a large refractive camera that includes mono-crystalline silicon
and fused silica elements with diameters as large as ~ 400 mm. This paper
contains a comprehensive description of all aspects of the instrument including
the fiber system, optics and opto-mechanics, detector arrays, mechanics and
cryogenics, instrument control, calibration system, optical performance and
stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte
Epigenetic Alterations in Liver of C57BL/6J Mice after Short-Term Inhalational Exposure to 1,3-Butadiene
Background1,3-Butadiene (BD) is a high-volume industrial chemical and a known human carcinogen. The main mode of BD carcinogenicity is thought to involve formation of genotoxic epoxides.ObjectivesIn this study we tested the hypothesis that BD may be epigenotoxic (i.e., cause changes in DNA and histone methylation) and explored the possible molecular mechanisms for the epigenetic changes.Methods and ResultsWe administered BD (6.25 and 625 ppm) to C57BL/6J male mice by inhalation for 2 weeks (6 hr/day, 5 days a week) and then examined liver tissue from these mice for signs of toxicity using histopathology and gene expression analyses. We observed no changes in mice exposed to 6.25 ppm BD, but glycogen depletion and dysregulation of hepatotoxicity biomarker genes were observed in mice exposed to 625 ppm BD. We detected N-7-(2,3,4-trihydroxybut-1-yl)guanine (THB-Gua) adducts in liver DNA of exposed mice in a dose-responsive manner, and also observed extensive alterations in the cellular epigenome in the liver, including demethylation of global DNA and repetitive elements and a decrease in histone H3 and H4 lysine methylation. In addition, we observed down-regulation of DNA methyltransferase 1 (Dnmt1) and suppressor of variegation 3â9 homolog 1, a histone lysine methyltransferase (Suv39h1), and up-regulation of the histone demethylase Jumonji domain 2 (Jmjd2a), proteins responsible for the accurate maintenance of the epigenetic marks. Although the epigenetic effects were most pronounced in the 625-ppm exposure group, some effects were evident in mice exposed to 6.25 ppm BD.ConclusionsThis study demonstrates that exposure to BD leads to epigenetic alterations in the liver, which may be important contributors to the mode of BD carcinogenicity
- âŠ