26 research outputs found

    Salmonella: Invasion, Evasion & Persistence

    Get PDF

    Serum Amyloid A Stimulates Vascular and Renal Dysfunction in Apolipoprotein E-Deficient Mice Fed a Normal Chow Diet

    Get PDF
    Elevated serum amyloid A (SAA) levels may promote endothelial dysfunction, which is linked to cardiovascular and renal pathologies. We investigated the effect of SAA on vascular and renal function in apolipoprotein E-deficient (ApoE−/−) mice. Male ApoE−/− mice received vehicle (control), low-level lipopolysaccharide (LPS), or recombinant human SAA by i.p. injection every third day for 2 weeks. Heart, aorta and kidney were harvested between 3 days and 18 weeks after treatment. SAA administration increased vascular cell adhesion molecule (VCAM)-1 expression and circulating monocyte chemotactic protein (MCP)-1 and decreased aortic cyclic guanosine monophosphate (cGMP), consistent with SAA inhibiting nitric oxide bioactivity. In addition, binding of labeled leukocytes to excised aorta increased as monitored using an ex vivo leukocyte adhesion assay. Renal injury was evident 4 weeks after commencement of SAA treatment, manifesting as increased plasma urea, urinary protein, oxidized lipids, urinary kidney injury molecule (KIM)-1 and multiple cytokines and chemokines in kidney tissue, relative to controls. Phosphorylation of nuclear-factor-kappa-beta (NFκB-p-P65), tissue factor (TF), and macrophage recruitment increased in kidneys from ApoE−/− mice 4 weeks after SAA treatment, confirming that SAA elicited a pro-inflammatory and pro-thrombotic phenotype. These data indicate that SAA impairs endothelial and renal function in ApoE−/− mice in the absence of a high-fat diet

    3-dimensional NET image

    No full text
    Z stacking of human Crohn's disease ileum specimen labelling neutrophil extracellular traps (NETs) structures including DNA, citrinillated H3, DNA, myeloperoxidase and neutrophil elastase. Image was labelled using a modified immunohistochemical technique with in OPAL platform

    Myeloperoxidase and Inflammatory Bowel Disease

    No full text
    Examining the relationship of neutrophil extracellular traps (NETs) in clinical IBD samples and the role of myeloperoxidase in modulating the gut microbiome

    Data set for paper The role of CXCR3 in colitis

    No full text
    Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the aetiopathogenesis is poorly understood, it is widely believed that IBD stems from a dysregulated immune response towards otherwise harmless commensal bacteria. Chemokines induce and enhance inflammation through their involvement in cellular trafficking. Reducing or limiting the influx of these proinflammatory cells has previously been demonstrated to attenuate inflammation. CXCR3, a chemokine receptor in the CXC family that binds to CXCL9, CXCL10 and CXCL11, is strongly overexpressed in the intestinal mucosa of IBD patients. We hypothesised that CXCR3 KO mice would have impaired cellular trafficking, thereby reducing the inflammatory insult by proinflammatory cell and attenuating the course of colitis. To investigate the role of CXCR3 in the progression of colitis, the development of dextran sulfate sodium (DSS)-induced colitis was investigated in CXCR3-/- mice over 9 days. This study demonstrated attenuated DSS-induced colitis in CXCR3-/- mice at both the macroscopic and microscopic level. Reduced colitis correlated with lower recruitment of neutrophils (p=0.0018), as well as decreased production of IL-6 (p< 0.0001), TNF (p=0.0038), and IFN- (p=0.0478). Overall, our results suggest that CXCR3 plays an important role in recruiting proinflammatory cells to the colon during colitis and that CXCR3 may be a therapeutic target to reduce the influx of proinflammatory cells in the inflamed colon

    Data files of work described in the manuscript: Increased cell size, structural complexity and migration of cancer cells acquiring fibroblast organelles by cell-projection pumping

    Get PDF
    These are data files for work described in the manuscript: Increased cell size, structural complexity and migration of cancer cells acquiring fibroblast organelles by cell-projection pumping. At the time these files were uploaded to the University of Sydney Research Repository, this work was in-press in the open-access on-line journal PLoS One. A pre-print of the manuscript was also available at: bioRxiv doi: http://biorxiv.org/cgi/content/short/770693v1. FACS, proliferation and migration data are provided in two separate MS Excel files titled: 1) Migration Data: which contains calculations for distance migrated in scratch assays; 2) FACS Proliferation and Scatterplots: which contains data for FACS forward and side scatter analysis, as well as proliferation assays and scatterplots for all data

    Increased cell size, structural complexity and migration of cancer cells acquiring fibroblast organelles by cell-projection pumping.

    No full text
    We recently described a hydrodynamic mechanism for cytoplasmic transfer between cells, termed cell-projection pumping (CPP). Earlier image analysis related altered SAOS-2 osteosarcoma cell morphology, to what we now recognize as CPP uptake of fibroblast cytoplasm. We here examine SAOS-2 phenotype following co-culture with human dermal fibroblasts (HDF) in which organelles were pre-labelled with a fluorescent lipophilic marker. Fluorescence activated cell sorting (FACS) analysis was performed of HDF and SAOS-2, cultured either alone or together. FACS forward scatter is proportionate to cell size, and increased for SAOS-2 with high levels of HDF fluorescence uptake (p < 0.004). FACS side scatter is proportionate to internal cell complexity, and increased in SAOS-2 with increasing uptake of HDF fluorescence (p < 0.004), consistent with uptake of HDF organelles. Scratch migration assays revealed that HDF migrated more quickly than SAOS-2 in both isolated cell culture, and following co-culture (p < 0.004). Notably, SAOS-2 with high levels of HDF labelling migrated faster compared with SAOS-2 with low HDF labelling (p < 0.008). A slight and unconvincing reduction in SAOS-2 proliferation was seen (p < 0.02). Similar results were obtained in single additional experiments with A673 and H312 cancer cells. Forward and side scatter results suggest organellar transfer by CPP increases cancer cell morphological diversity. This may contribute to histological pleomorphism relevant to cancer diagnosis and prognosis. Also, increased migration of sub-populations of cancer cells with high CPP organellar uptake, may contribute to invasion and metastasis in-vivo. We thus suggest relevance of CPP to cancer diagnosis and progression

    Cell-Projection Pumping of Fibroblast Contents into Osteosarcoma SAOS-2 Cells Correlates with Increased SAOS-2 Proliferation and Migration, as well as Altered Morphology

    No full text
    We earlier reported that cell-projection pumping transfers fibroblast contents to cancer cells and this alters the cancer cell phenotype. Here, we report on single-cell tracking of time lapse recordings from co-cultured fluorescent fibroblasts and SAOS-2 osteosarcoma cells, tracking 5201 cells across 7 experiments. The fluorescent lipophilic marker DiD was used to label fibroblast organelles and to trace the transfer of fibroblast cytoplasm into SAOS-2 cells. We related SAOS-2 phenotypic change to levels of fluorescence transfer from fibroblasts to SAOS-2 cells, as well as what we term &lsquo;compensated fluorescence&rsquo;, that numerically projects mother cell fluorescence post-mitosis into daughter cells. The comparison of absolute with compensated fluorescence allowed us to deduct if the phenotypic effects in mother SAOS-2 cells were inherited by their daughters. SAOS-2 receipt of fibroblast fluorescence correlated by Kendall&rsquo;s tau with cell-profile area and without evidence of persistence in daughter cells (median tau = 0.51, p &lt; 0.016); negatively and weakly with cell circularity and with evidence of persistence (median tau = &minus;0.19, p &lt; 0.05); and very weakly with cell migration velocity and without evidence of persistence (median tau = 0.01, p &lt; 0.016). In addition, mitotic SAOS-2 cells had higher rates of prior fluorescence uptake (median = 64.9 units/day) than non-dividing cells (median = 35.6 units/day, p &lt; 0.016) and there was no evidence of persistence post-mitosis. We conclude that there was an appreciable impact of cell-projection pumping on cancer cell phenotype relevant to cancer histopathological diagnosis, clinical spread and growth, with most effects being &lsquo;reset&rsquo; by cancer cell mitosis

    The Role of Thiocyanate in Modulating Myeloperoxidase Activity during Disease

    Get PDF
    Thiocyanate (SCN-) is a pseudohalide anion omnipresent across mammals and is particularly concentrated in secretions within the oral cavity, digestive tract and airway. Thiocyanate can outcompete chlorine anions and other halides (F-, Br-, I-) as substrates for myeloperoxidase by undergoing two-electron oxidation with hydrogen peroxide. This forms their respective hypohalous acids (HOX where X- = halides) and in the case of thiocyanate, hypothiocyanous acid (HOSCN), which is also a bactericidal oxidative species involved in the regulation of commensal and pathogenic microflora. Disease may dysregulate redox processes and cause imbalances in the oxidative profile, where typically favoured oxidative species, such as hypochlorous acid (HOCl), result in an overabundance of chlorinated protein residues. As such, the pharmacological capacity of thiocyanate has been recently investigated for its ability to modulate myeloperoxidase activity for HOSCN, a less potent species relative to HOCl, although outcomes vary significantly across different disease models. To date, most studies have focused on therapeutic effects in respiratory and cardiovascular animal models. However, we note other conditions such as rheumatic arthritis where SCN- administration may worsen patient outcomes. Here, we discuss the pathophysiological role of SCN- in diseases where MPO is implicated
    corecore