3 research outputs found

    Endogenous origin of Pseudomonas aeruginosa infecting hospitalized patients in Ecuador

    No full text
    Summary: Recent evidence suggests that Pseudomonas aeruginosa, a bacterium that has the ability to cause deadly infections in hospitalized patients, could originate in the patient's own flora. We employed the Oxford Nanopore platform to obtain whole genome sequences (WGS) from clinical and rectal screen P. aeruginosa strains belonging to 15 patients from two hospitals. Our study found evidence that clinical and rectal isolates were clonal, with some evidence suggesting that the infecting strain was present in the patient's intestine at the time of admission, ruling out hospital acquisition. The use of WGS analysis is crucial to detect alternative sources of P. aeruginosa to develop new preventive measures against these serious infections

    SARS-CoV-2 detection and sequencing in heart tissue associated with myocarditis and persistent arrhythmia: A case report

    No full text
    Background: SARS-CoV-2 uses the human cell receptor angiotensin-converting enzyme (ACE2). ACE2 is widely present in the cardiovascular system including the myocardium and the conduction system. COVID-19 patients that present severe symptoms have been reported to have complications involving myocardial injuries caused by the virus. Here we report the detection of SARS-CoV-2 by whole genome sequencing in the endocardium of a patient with severe bradycardia. Case presentation: We report a case of a 34-year-old male patient with COVID-19 tested by PCR, he started with gastrointestinal symptoms, however, he quickly deteriorated his hemodynamic state by means of myocarditis and bradycardia. After performing an endocardium biopsy, it was possible to identify the presence of SARS-CoV-2 in the heart tissue and to sequence its whole genome using the ARTIC-Network protocol and a modified tissue RNA extraction method. The patient’s outcome was improved after a permanent pacemaker was implanted. Conclusions: It was possible to identify a SARS-CoV-2 clade 20A in the endocardium of the reported patient

    Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador

    No full text
    Characterisation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic diversity through space and time can reveal trends in virus importation and domestic circulation and permit the exploration of questions regarding the early transmission dynamics. Here, we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the coronavirus-19 pandemic. We generated and analysed 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylogeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions, with differential degrees of persistence and national dissemination.ISSN:2057-157
    corecore