644 research outputs found

    Photometric evolution of dusty starburst mergers:On the nature of ultra-luminous infrared galaxies

    Get PDF
    By performing N-body simulations of chemodynamical evolution of galaxies with dusty starbursts, we investigate photometric evolution of gas-rich major mergers in order to explore the nature of ultraluminous infrared galaxies (ULIRGs) with the total infrared luminosity (LIRL_{\rm IR} for 8∼10008\sim 1000 μ\mum) of ∼\sim 101210^{12} L⊙L_{\odot}. Main results are the following three. (1) Global colors and absolute magnitudes the during dusty starburst of a major merger do not change with time significantly, because interstellar dust heavily obscures young starburst populations that could cause rapid evolution of photometric properties of the merger. (2) Dust extinction of stellar populations in a galaxy merger with large infrared luminosity (LIRL_{\rm IR} >> 101110^{11} L⊙L_{\odot}) is selective in the sense that younger stellar populations are preferentially obscured by dust than old ones. This is because younger populations are located in the central region where a larger amount of dusty interstellar gas can be transferred from the outer gas-rich regions of the merger. (3) Both LIRL_{\rm IR} and the ratio of LIRL_{\rm IR} to BB band luminosity (LB(L_{\rm B}) increases as the star formation rate increase during the starburst of the present merger model, resulting in the positive correlation between LIRL_{\rm IR} and LIR/LBL_{\rm IR}/L_{\rm B}.Comment: 32 pages 25 figures,2001,ApJ,in press. For all 25 PS figures (including fig25.ps), see http://newt.phys.unsw.edu.au/~bekki/res.dir/paper.dir/apj06.dir/fig.tar.g

    The Origin of Large-scale HI structures in the Magellanic Bridge

    Full text link
    We investigate the formation of a number of key large-scale HI features in the ISM of the Magellanic Bridge using dissipationless numerical simulation techniques. This study comprises the first direct comparison between detailed HI maps of the Bridge and numerical simulations. We confirm that the SMC forms two tidal filaments: a near arm, which forms the connection between the SMC and LMC, and a counterarm. We show that the HI of the most dense part of the Bridge can become arranged into a bimodal configuration, and that the formation of a "loop" of HI, located off the North-Eastern edge of the SMC can be reproduced simply as a projection of the counter-arm, and without invoking localised energy-deposition processes such as SNe or stellar winds.Comment: 5 Pages, 4 Figures, Accepted - MNRAS let

    Potential formation sites of super star clusters in ultra-luminous infrared galaxies

    Get PDF
    Recent observational results on high spatial resolution images of ultra-luminous infrared galaxies (ULIGs) have revealed very luminous, young, compact, and heavily obscured super star clusters in their central regions, suggested to be formed by gas-rich major mergers. By using stellar and gaseous numerical simulations of galaxy mergers, we firstly demonstrate that the central regions of ULIGs are the most promising formation sites of super star clusters owing to the rather high gaseous pressure of the interstellar medium. Based on simple analytical arguments, we secondly discuss the possibility that super star clusters in an ULIG can be efficiently transferred into the nuclear region owing to dynamical friction and consequently merge with one another to form a single compact stellar nucleus with a seed massive black hole. We thus suggest that multiple merging between super star clusters formed by nuclear starbursts in the central regions of ULIGs can result in the formation of massive black holes.Comment: 12 pages 4 figures, 2001, accepted by ApJ

    Impact of dark matter subhalos on extended HI disks of galaxies: Possible formation of HI fine structures and stars

    Full text link
    Recent observations have discovered star formation activities in the extreme outer regions of disk galaxies. However it remains unclear what physical mechanisms are responsible for triggering star formation in such low-density gaseous environments of galaxies. In order to understand the origin of these outer star-forming regions, we numerically investigate how the impact of dark matter subhalos orbiting a gas-rich disk galaxy embedded in a massive dark matter halo influences the dynamical evolution of outer HI gas disk of the galaxy. We find that if the masses of the subhalos (MsbM_{\rm sb}) in a galaxy with an extended HI gas disk are as large as 10−3×Mh10^{-3} \times M_{\rm h}, where MhM_{\rm h} is the total mass of the galaxy's dark halo, local fine structures can be formed in the extended HI disk. We also find that the gas densities of some apparently filamentary structures can exceed a threshold gas density for star formation and thus be likely to be converted into new stars in the outer part of the HI disk in some models with larger MsbM_{\rm sb}. These results thus imply that the impact of dark matter subhalos (``dark impact'') can be important for better understanding the origin of recent star formation discovered in the extreme outer regions of disk galaxies. We also suggest that characteristic morphologies of local gaseous structures formed by the dark impact can indirectly prove the existence of dark matter subhalos in galaxies. We discuss the origin of giant HI holes observed in some gas-rich galaxies (e.g., NGC 6822) in the context of the dark impact.Comment: 8 pages, 4 figures, accepted by ApJ
    • …
    corecore