7 research outputs found

    Patient Profiling in Cartilage Regeneration Prognostic Factors Determining Success of Treatment for Cartilage Defects

    No full text
    Background: Cartilage therapy for focal articular lesions has been implemented for more than a decade, and it is becoming increasingly available. What is still lacking, however, is analysis of patient characteristics to help improve outcome or select patients for specific treatment. Purpose: To analyze the prognostic value of patient age and defect size, age, and location on clinical outcome 3 years after cartilage therapy. Study Design: Cohort study; Level of evidence, 3. Methods: Fifty-five patients (age, 35 9 years) were randomly selected from a prospective database. Each had a traumatic knee injury, each was treated for a focal cartilage lesion, and each was assessed with the Knee injury and Osteoarthritis Outcome Score (KOOS) 3 years after surgery. Patient characteristics (ie, patient age and defect size, age, and location) were tested for valid inclusion in the regression model. Multiple linear regression was used to determine which variables influenced clinical improvement. Binary KOOS scores were generated on the basis of age-matched healthy patients and assessed in a logistic regression analysis. Results: Normality tests confirmed normal distribution for each variable (P .05). Clinical outcome regarding the treatment of medial defects was better than that of the lateral defects (10.38-25.26 points for the different KOOS subscales; P <.05). The KOOS improvement from baseline was better for patients = 30 years (7.31-29.24 points for the different KOOS subscales; P <.05). Patients with defects Conclusion: This study illustrates the influence of patient age and defect location and age on clinical outcome 3 years after treatment of a focal cartilage lesion in patients with a traumatic knee injury

    Chondrogenic potential of articular chondrocytes depends on their original location

    No full text
    OBJECTIVE: This study aimed to investigate the regenerative capacity of chondrocytes derived from debrided defect cartilage and healthy cartilage from different regions in the joint to determine the best cell source for regenerative cartilage therapies. METHODS: Articular cartilage was obtained from Outerbridge grade III and IV cartilage lesions and from macroscopically healthy weight-bearing and nonweight-bearing (NWB) locations in the knee. Chondrocytes isolated from all locations were either pelleted directly (P0 pellets) or after expansion (P2 pellets) and analyzed for glycosaminoglycan (GAG), DNA, and cartilage-specific gene expression. Harvested cartilage samples and cultured pellets were also analyzed by Safranin O histology and immunohistochemistry for collagen I, II, and X. Immunohistochemical stainings were quantified using a computerized pixel-intensity staining segmentation method. RESULTS: After 4 weeks of culture, the P0 pellets derived from grade III or healthy weight-bearing chondrocytes contained more (p<0.015) GAG and GAG normalized per DNA compared to those from grade IV and NWB locations. After expansion, these differences were lost. Cartilage-specific gene expression was higher (p<0.04) in P0 pellets from grade III chondrocytes compared to grade IV chondrocytes. Semiquantitative immunohistochemistry showed a more intense (p<0.033) collagen I and X staining for grade IV debrided cartilage compared to grade III and weight-bearing cartilage. Also, collagen type X staining intensity was higher (p<0.033) in NWB cartilage compared to grade III and weight-bearing regions. CONCLUSION: Chondrocytes derived from debrided cartilage perform better than cells from the NWB biopsy site, however, this difference is lost upon expansion. Based thereon, the debrided defect cartilage could be a viable donor site for regenerative cartilage surgery

    Agrokémia és talajtan 42.

    Get PDF
    OBJECTIVE: This study aimed to investigate the regenerative capacity of chondrocytes derived from debrided defect cartilage and healthy cartilage from different regions in the joint to determine the best cell source for regenerative cartilage therapies. METHODS: Articular cartilage was obtained from Outerbridge grade III and IV cartilage lesions and from macroscopically healthy weight-bearing and nonweight-bearing (NWB) locations in the knee. Chondrocytes isolated from all locations were either pelleted directly (P0 pellets) or after expansion (P2 pellets) and analyzed for glycosaminoglycan (GAG), DNA, and cartilage-specific gene expression. Harvested cartilage samples and cultured pellets were also analyzed by Safranin O histology and immunohistochemistry for collagen I, II, and X. Immunohistochemical stainings were quantified using a computerized pixel-intensity staining segmentation method. RESULTS: After 4 weeks of culture, the P0 pellets derived from grade III or healthy weight-bearing chondrocytes contained more (p<0.015) GAG and GAG normalized per DNA compared to those from grade IV and NWB locations. After expansion, these differences were lost. Cartilage-specific gene expression was higher (p<0.04) in P0 pellets from grade III chondrocytes compared to grade IV chondrocytes. Semiquantitative immunohistochemistry showed a more intense (p<0.033) collagen I and X staining for grade IV debrided cartilage compared to grade III and weight-bearing cartilage. Also, collagen type X staining intensity was higher (p<0.033) in NWB cartilage compared to grade III and weight-bearing regions. CONCLUSION: Chondrocytes derived from debrided cartilage perform better than cells from the NWB biopsy site, however, this difference is lost upon expansion. Based thereon, the debrided defect cartilage could be a viable donor site for regenerative cartilage surgery

    Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells

    No full text
    The application of RNA interference (RNAi) has great therapeutic potential for degenerative diseases of cartilaginous tissues by means of fine tuning the phenotype of cells used for regeneration. However, possible non-specific effects of transfection per se might be relevant for future clinical application. In the current study, we selected two synthetic transfection reagents, a cationic lipid-based commercial reagent Lipofectamine RNAiMAX and polyethylenimine (PEI), and two naturally-derived transfection reagents, namely the polysaccharides chitosan (98% deacetylation) and hyaluronic acid (20% amidation), for siRNA delivery into primary mesenchymal cells including nucleus pulposus cells, articular chondrocytes and mesenchymal stem cells (MSCs). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing by 20 nM or 200 nM siRNA at day 3 and day 6 post-transfection. In addition to silencing efficiency, non-specific effects such as cytotoxicity, change in DNA content and differentiation potential of cells were evaluated. Among the four transfection reagents, the commercial liposome-based agent was the most efficient reagent for siRNA delivery at 20 nM siRNA, followed by chitosan. Transfection using cationic liposomes, chitosan and PEI showed some decrease in viability and DNA content to varying degrees that was dependent on the siRNA dose and cell type evaluated, but independent of GAPDH knockdown. Some effects on DNA content were not accompanied by concomitant changes in viability. However, changes in expression of marker genes for cell cycle inhibition or progression, such as p21 and PCNA, could not explain the changes in DNA content. Interestingly, aspecific upregulation of GAPDH activity was found, which was limited to cartilaginous cells. In conclusion, non-specific effects should not be overlooked in the application of RNAi for mesenchymal cell transfection and may need to be overcome for its effective therapeutic application
    corecore