53 research outputs found
On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing
Integration of the material preparation step into the device fabrication process is of prime importance for the development of high performance devices. This study presents an innovative strategy for the in situ assembly of graphene-based aerogels on a chip by polymerizationâreduction and annealing processes, which are applied as chemiresistive gas sensors for the detection of NO2.TU Berlin, Open-Access-Mittel - 201
Ceria-Based Dual-Phase Membranes for High-Temperature Carbon Dioxide Separation: Effect of Iron Doping and Pore Generation with MgO Template
Dual-phase membranes for high-temperature carbon dioxide separation have emerged as promising technology to mitigate anthropogenic greenhouse gases emissions, especially as a pre- and post-combustion separation technique in coal burning power plants. To implement these membranes industrially, the carbon dioxide permeability must be improved. In this study, Ce0.8Sm0.2O2âδ (SDC) and Ce0.8Sm0.19Fe0.01O2âδ (FSDC) ceramic powders were used to form the skeleton in dual-phase membranes. The use of MgO as an environmentally friendly pore generator allows control over the membrane porosity and microstructure in order to compare the effect of the membraneâs ceramic phase. The ceramic powders and the resulting membranes were characterized using ICP-OES, HSM, gravimetric analysis, SEM/EDX, and XRD, and the carbon dioxide flux density was quantified using a high-temperature membrane permeation setup. The carbon dioxide permeability slightly increases with the addition of iron in the FSDC membranes compared to the SDC membranes mainly due to the reported scavenging effect of iron with the siliceous impurities, with an additional potential contribution of an increased crystallite size due to viscous flow sintering. The increased permeability of the FSDC system and the proper microstructure control by MgO can be further extended to optimize carbon dioxide permeability in this membrane system.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli
Real-time direct transmission electron microscopy imaging of phase and morphology transformation from solid indium oxide hydroxide to hollow corundum-type indium oxide nanocrystallites
A time-resolved series of high-resolution transmission electron microscopy (HRTEM) images are used to monitor phase and morphology transformation of rod-like and spherical particles with the initial ortho-rhombic In OOH phase in situ under continuous illumination with high-energy electrons in a transmission electron microscope. For both particle types, the electron-beam irradiation induces a fast InOOH to rh-InâOâ decomposition accompanied by the formation of voids within the particle/rod center. After illu-mination time intervals of about 1â2 min (i.e.electron dose 6.3â12.6 Ă 10âˇenm¯²) for particles and8 min (4.3 Ă 108enm¯²) for rods, respectively, several small empty cavities become visible in the particle/rod center. The cavities coalesce and form a large hollow space/canal after further illumination. Time-resolved in situ HRTEM unambiguously shows that the formation of internal voids in both nano particle types is a consequence of the structural InOOH-to-rh-InâOâ phase transition that starts at the surface of the corresponding particle. The as-formed oxide phase encapsulates the untransformed hydroxylated phase. Its decomposition does not follow the Kirkendall mechanism; the matter transferred outwards is removed in the form of water, leading to void formation inside without an increase of the particle size
Fabrication and Characterization of Ice Templated Membrane Supports from Portland Cement
Porous ceramic membranes for aqueous microfiltration and ultrafiltration processes suffer from the high-costs of material and processing. The latter is mainly due to the high-temperature sintering step. In this work, cement-based membrane supports from ultrafine Portland cement are studied as a low-cost alternative to traditional oxidic ceramic supports. An environmentally friendly freeze-casting fabrication route is applied for the fabrication of porous membrane supports. Cement membrane supports are becoming mechanically stabile after hydration reaction of cement with water, which does not require any high-temperature sintering step as in a conventional ceramic membrane fabrication process. This fabrication route, which is sintering-free, decreases the cost and environmental impact of the membrane fabrication process by eliminating extra energy consumption step during sintering. The Archimedes method, scanning electron microscopy (SEM), micro-computed tomographic (ÂľCT), and mercury porosimetry characterize the membrane supports in respect to open porosity, pore size distribution, morphology, and connectivity. The flexural strength of the 3 mm thick membranes is in the range from 1 to 6 MPa, as obtained by the ring-on-ring tests. The obtained membrane supports possess porosity in the range between 48 and 73% depending on fabrication conditions (cooling rate and the solid content, as determined by Archimedes method enabling water flux in the range between 79 and 180 L/(h¡m2) at 0.5 bar transmembrane pressure difference and 3 mm membrane thickness.TU Berlin, Open-Access-Mittel â 202
A quantitative microscopic view on the gas-phase-dependent phase transformation from tetragonal to monoclinic ZrO2
ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature- and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature- and gas atmosphere-dependent phase transformation of tetragonal t-ZrO2 into monoclinic m-ZrO2 during heatingâcooling cycles from room temperature to 1273 K. Synchrotron-based in situ X-ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal-to-monoclinic (tâm) phase transformation is suppressed in the sample heated only up to âź850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t-ZrO2 and m-ZrO2
AlF3-assisted flux growth of mullite whiskers and their application in fabrication of porous mullite-alumina monoliths
Mullite is a promising material with its competitive thermochemical and mechanical properties. Although mullite could be obtained by several synthesis methods, the flux method emerges with its advantages over other methods. However, obtaining mullite whiskers with a high aspect ratio and length for ceramic reinforcements is still challenging. In this work, mullite whiskers were grown from AlF3-assisted flux. The addition of AlF3 to flux salt not only decreases the formation temperature of mullite to as low as 700 â°C and suppresses the formation of corundum side phase, but also increases the length and aspect ratio of the whiskers. The obtained mullite whiskers were used as reinforcement for porous alumina monoliths prepared by the freeze casting route and subsequent sintering at 1500 â°C. The fabricated mullite-alumina monoliths show competitive compressive strength of 25.7 âMPa while having as high as 70.6% porosity, which makes them a potential candidate for membrane applications.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli
Surface chemistry and stability of metastable corundum-type In2O3
To account for the explanation of an eventual sensing and catalytic behavior of rhombohedral In2O3 (rh-In2O3) and the dependence of the metastability of the latter on gas atmospheres, in situ electrochemical impedance spectroscopic (EIS), Fourier-transform infrared spectroscopic (FT-IR), in situ X-ray diffraction and in situ thermogravimetric analyses in inert (helium) and reactive gases (hydrogen, carbon monoxide and carbon dioxide) have been conducted to link the gas-dependent electrical conductivity features and the surface chemical properties to its metastability towards cubic In2O3. In particular, for highly reducible oxides such as In2O3, for which not only the formation of oxygen vacancies, but deep reduction to the metallic state (i.e. metallic indium) also has to be taken into account, this approach is imperative. Temperature-dependent impedance features are strongly dependent on the respective gas composition and are assigned to distinct changes in either surface adsorbates or free charge carrier absorbance, allowing for differentiating and distinguishing between bulk reduction-related features from those directly arising from surface chemical alterations. For the measurements in an inert gas atmosphere, this analysis specifically also included monitoring the fate of differently bonded, and hence, differently reactive, hydroxyl groups. Reduction of rh-In2O3 proceeds to a large extent indirectly via rh-In2O3 â c-In2O3 â In metal. As deduced from the CO and CO2 adsorption experiments, rhombohedral In2O3 exhibits predominantly Lewis acidic surface sites. The basic character is less pronounced, directly explaining the previously observed high (inverse) waterâgas shift activity and the low CO2 selectivity in methanol steam reforming.DFG, SPP 1415, Kristalline Nichtgleichgewichtsphasen - Präparation, Charakterisierung und in situ-Untersuchung der Bildungsmechanisme
Grafting and stabilization of ordered mesoporous silica COK-12 with graphene oxide for enhanced removal of methylene blue
Large-pore ordered mesoporous silica (OMS) COK-12, analogous to the well-known SBA-15, but synthesized in a more environmentally friendly way and exhibiting a shorter plate-like structure, was grafted with different amounts of graphene oxide (GO) for the first time in an inexpensive and rapid process, that was successfully upscaled. Samples were examined with nitrogen sorption analysis, SAXS, Raman spectroscopy, XPS, and zeta potential analysis. Adsorption experiments with the cationic dye methylene blue (MB) were conducted on the grafted materials and on pure COK-12, taking into account the influence of initial dye concentration (30â600 mg Lâ1), adsorbent dosage (0.2â14 g Lâ1), contact time (0.3â300 min), solution pH (4â10), and influence of salts and temperature (0â1 M NaCl, 80 °C) to simulate industrial dye effluent. The adsorption process was found to be represented best by the Langmuir isotherm model, i.e., adsorption is a monolayer process. The calculated maximum adsorption capacities were found to be 20.2 and 197.5 mg gâ1 at dosages of 5 and 0.5 g Lâ1 for pure COK-12 and COK-12 grafted with 50 wt% GO, respectively, at pH 5.65 and MB concentration of 100 mg Lâ1. Adsorption kinetics were found to follow the pseudo-second order model, i.e., chemisorption is the rate controlling step. The adsorption performances could be well preserved at simulated dye effluent. Desorption was found to be most effective with hydrochloric acid. The COK-12 grafted with GO presented in this work shows superior adsorption properties in comparison to other grafted OMS materials. In addition, grafting with GO remarkably improved the stability of COK-12 in aqueous solution.TU Berlin, Open-Access-Mittel - 201
Cobalt-substituted porous calcium copper titanate electrodes for paracetamol degradation by an electro-oxidation/peroxymonosulfate system
Developing cobalt-substituted perovskite electroactive membranes with an efficient Co/Cu combination mode is an important environmental challenge for removing drugs via peroxymonosulfate (PMS) activation. In this work, cobalt (Co)-substituted calcium copper titanatewas synthesized with an easy ball milling process and used as an anode in electro-oxidation in the presence of PMS for paracetamol degradation. The Co-CCTO anode with a Co ratio of 0.5 showed the highest removal efficiency (100 % of 10 ppm paracetamol after 180 min) due to the increase of the active sites and the appearance of the Co2+/Co3+ cycle that accelerates the charge transfer with Co incorporation into the lattice. Scavenger experiments showed that sulfate radicals (SO4Ěâ), oxygen radicals (O2Ě-), hydroxyl radicals (ĚOH), and singlet oxygen (1O2) were generated in the electro-oxidation-PMS reaction system and that SO4Ěâ, 1O2, and O2Ě- were the dominant active radicals. The toxicity tests with Vibrio fischeri confirmed paracetamol mineralization and decomposition and the elimination of harmful by-products. It is crucial to explore the substitution of CCTO with different metal dopants in order to optimize the membrane performance and overcome the limitations associated with cobalt substitution
Porous calcium copper titanate electrodes for paracetamol degradation by electro-oxidation via CuO-induced peroxymonosulfate activation
Some drugs cannot be efficiently eliminated using routine wastewater treatments and therefore are considered persistent organic pollutants (POPs). POPs can be removed using advanced oxidation processes. Among these processes, the combination of electrocatalysis and a sulfate-based advanced oxidation process via peroxymonosulfate (PMS) activation is an attractive approach due to its high efficiency, low energy consumption and non-selective attack. It is well known that the type of anode strongly affects the electrocatalysis performance for water treatment. Here, we evaluated perovskites as electrode material due to their unique structural properties and high chemical stability. We fabricated porous anodes of calcium copper titanate (CaCu3Ti4O12; CCTO) with different percentages (20%, 30% and 40%) of polymethyl methacrylate (PMMA) by ball-milling. The samples that included PMMA displayed 50% porosity and pores were homogenously distributed. Morphological measurements show the presence of grain structures and grain boundaries containing CCTO and CuO phases, respectively. CCTO with 30 wt% PMMA (CCTO-30) exhibited the highest CuO phase amount, defect percentage and oxidationâreduction peak, and the smallest resistance. We used the obtained CCTO nanocomposites as anodes in a beaker (210 mL) with PMS (0.5 mM) to treat 10 ppm paracetamol in 50 mM sodium sulfate. After 90 minutes, paracetamol was completely decomposed using CCTO-30 due to PMS activation by a copper catalytic cycle (Cu2+/Cu1+ and Cu2+/Cu3+) to generate ËSO4â radicals and Cu3+ non-radicals that are selective for its removal
- âŚ